Яков Гегузин - Капля Страница 8
Яков Гегузин - Капля читать онлайн бесплатно
Легко заметить, что в формуле Кельвина нет ничего специфически «жидкого» и ее можно применять и к твердым закристаллизовавшимся каплям. Надо только при этом помнить, что поверхностное натяжение зависит от ориентации кристаллографических плоскостей, охраняющих застывшую каплю. Но это деталь, а в главном формула применима к твердым кристаллическим каплям. Из формулы следует, что, чем меньше капля, т. е. чем меньше ее радиус, тем на большую величину давление пара вблизи ее поверхности превосходит давление пара вблизи плоской поверхности вещества, из которого капля состоит.
Понять это легко. Ведь что означают слова «упругость пара больше» или «упругость пара меньше»? Они означают, что при прочих равных условиях в газе вблизи поверхности будет большая или меньшая концентрация атомов вещества капли. Атом, который расположен на искривленной поверхности капли, имеет меньшее число соседей, чем тот, который расположен наплоской. В случаепредельно маленькой капли, состоящей из одного атома, этот атом и находился бы па «поверхности» в единственном числе, вообще не имея соседей. Капля из одного атома, конечно же, никакая не капля, но эта условность помогает почувствовать тенденцию: чем меньше капля, тем меньше соседей у атома, сидящего на ее поверхности. А меньше соседей — меньше связей, удерживающих атом на поверхности, меньше связей — легче оторваться, легче оторваться — большее число атомов это совершит, и следовательно, большая их концентрация будет в газе вблизи поверхности. Именно это строго и описывает формула.
Борис Яковлевич прочел эту формулу по-своему, неожиданно и формально очень строго. Он обратил внимание на то, что она примечательна не только теми величинами, которые входят в нее, но и теми, которые в ней отсутствуют. Из величин, характеризующих вещество капли, в формулу входят лишь поверхностная энергия и объем, приходящийся на один атом. Масса атома не входит. Формально это означает, рассуждал он, что формула годится для вещества с любой массой атома, от бесконечной до равной нулю. Бесконечная масса — это по ту сторону разумного, а вот о «веществе» с нулевой массой «атома» можно говорить вполне серьезно, не забывая, однако, о кавычках. Таким «веществом» является пустота.
Несколько странное соседство слов «вещество» и «пустота». В действительности имеется в виду не «вещество», а отсутствие вещества. Например, в узле кристаллической решетки нет атома, которому следовало бы в этом узле быть. Этот свободный от атома узел можно назвать «атомом пустоты», а физики его иногда называют «вакансией». Очевидно, скопление большого количества «атомов пустоты» должно образовать «каплю пустоты», т. е. пору. Все это по аналогии с реальными атомами и реальным веществом: скопление большого количества, скажем, атомов железа, образует каплю железа. Разумеется, при температуре более высокой, чем температура плавления железа.
Итак, пустой узел в кристаллической решетке — «атом пустоты», пора в кристалле — «капля пустоты», и они должны подчиняться формуле, которая впервые была написана более 100 лет назад и применительно к «капле пустоты» впервые прочтена Борисом Яковлевичем Пинесом.
Теперь о следствиях нового прочтения формулы. И не о всех, а о самом главном, ради которого стоило пристально всмотреться в старую формулу и заново ее прочесть.
Перенос жидкости из капли в блюдце
Капля пустоты (пора) испаряется в кристалл. Вблизи поры много вакансий (зачерненные кружки), вдали — мало
Вот опыт, который демонстрируют на школьных уроках физики или рассказывают о нем. Небольшой стеклянный колпак (перевернутый стакан) установлен на стекле. Под колпаком блюдечко с водой и рядом на предметном стеклышке капли воды. Эти капли надо поместить на стеклышко после того, как пространство под колпаком насытится водяным паром, который образуется над плоской поверхностью воды в блюдце. Через некоторое время капли исчезнут — они испарятся, а возникшие при этом в водяном паре молекулы воды сконденсируются на поверхности воды в блюдце.
Итак, в начале опыта под колпаком было три объекта: вода в блюдце, вода в каплях и насыщенный водяной пар. Опыт окончился, когда один из объектов исчез — капель не стало. Здесь все ясно: согласно формуле, давление пара над изогнутой поверхностью водяной капли больше, чем над плоской поверхностью воды в блюдце, и пар под влиянием этой разности давлений двигался по направлению к блюдцу — уходил оттуда, где его давление больше, и приходил туда, где его давление меньше. Чтобы вблизи своей поверхности поддерживать давление, предписываемое ей формулой, капля должна все время испаряться. Она это добросовестно делала и в конце концов исчезла.
А теперь тот же опыт только не с каплями и атомами реальной жидкости, а с «каплями» и «атомами» пустоты. Вместо колпака с блюдцем и каплей — монокристалл. Он огранен плоскими поверхностями и в объеме имеет одну пору сферической формы. Вблизи изогнутой поверхности поры (капля!) концентрация вакансий повышена, а вблизи плоской поверхности, которая отделяет кристалл от окружающего пространства (вода в блюдце!), концентрация вакансий нормальная, не повышена. Очевидно, появится поток вакансий от поры к поверхности кристалла, и, подобно капле воды, пора исчезнет — «испарится в кристалл». Образовавшийся при этом в кристалле избыток вакансий со временем сгладится — вакансии либо поглотятся внутренними стоками, либо с помощью диффузии переместятся к внешней поверхности кристалла.
Начали мы опыт с пористым, а окончили с беспористым кристаллом! Как быстро это произойдет? Все зависит от размеров поры и температуры кристалла. Например, пора, радиус которой один микрон, в медном кристалле при температуре 1000° С исчезает приблизительно за 30 мин.
Все рассказанное о формуле, об аналогии между реальными каплями и каплями пустоты лежит в основе целого раздела современной физики твердого тела— физики спекания, которая объясняет, как пористые кристаллические тела самопроизвольно при высоких температурах превращаются в плотные. Оказывается, капли пустоты могут испаряться в кристалл!
Удобная «постель» для капли
В названии очерка нет надуманности — его содержание находится в полном соответствии с названием. Дело в том, что гладкая, чистая, полированная поверхность твердого тела для жидкой капли неудобна. Попав на нее, капля будет пытаться изменить, улучшить подложку, сделать ее более удобной, даже если для этого ей придется трудиться очень долго.
Взаимное расположение сил, действующих на контур капли, лежащей на гладкой твердой поверхности
Напомню, что нет ничего удобнее для капли, чем быть взвешенной в пространстве, в невесомости: ни с чем она не соприкасается, никакие силы ее не искажают и ни к каким изменениям она не стремится. А на пластинке с плоской поверхностью все не так, даже если пластинка с каплей находится в невесомости.
Вначале подумаем над тем, чем гладкая поверхность неудобна для жидкой капли. Казалось бы, капля подвижна и должна, переливаясь, как-то приспособиться к плоской поверхности, сделать свое пребывание на ней удобным. Оказывается, что одним изменением собственной формы добиться этого капля не может.
Посмотрите на приведенный рисунок. На нем изображена капля жидкости, смачивающей твердую поверхность (угол φ — острый). Стрелками обозначены силы, обусловленные поверхностным натяжением на границе подложка — капля (α21), подложка — воздух (α20) и капля — воздух (α10). Все дальнейшее можно было бы рассказать, имея в виду и каплю, не смачивающую твердую поверхность. Но мы остановимся на случае, который изображен на рисунке. Из него с очевидностью следует, что три силы, которые соответствуют поверхностным натяжениям твердое — воздух, твердое — капля и капля — воздух, ни при какой форме капли не могут прийти в равновесие, так как первые две из них направлены одна против другой и лежат в одной плоскости, а третья — под углом к ней. Именно поэтому имеется нескомпенсированная сила, приложенная к контуру капли,— на рисунке она обозначена жирной стрелкой и, пожалуй, может считаться количественной мерой степени неудобства подложки. Капле надо сделать что-либо с собой или с подложкой, чтобы избавиться от нее.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.