Николай Глинка - Общая химия Страница 16
Николай Глинка - Общая химия читать онлайн бесплатно
- 60 -
Новые элементы получили названия технеций (порядковый номер 43), прометий (61), астат (85) и франций (87). В настоящее время все клетки периодической системы между водородом и ураном заполнены. Однако сама периодическая система не является завершенной, о чем свидетельствует открытие трансурановых (заурановых) элементов (подробнее см. § 37).
22. Атомные спектры.
Развитая Резерфордом ядерная модель была крупным шагом в познании строения атома. Основные черты этой модели — наличие в атоме положительно заряженного тяжелого ядра, окруженного электронами — выдержали испытание временем и подтверждены большим числом экспериментов. Однако модель Резерфорда в некоторых отношениях противоречила твердо установленным фактам. Отметим два таких противоречия.
Во-первых, теория Резерфорда не могла объяснить устойчивости атома. Электрон, вращающийся вокруг положительно заряженного ядра, должен, подобно колеблющемуся электрическому заряду, испускать электромагнитную энергию в виде световых волн. Но, излучая свет, электрон теряет часть своей энергии, что приводит к нарушению равновесия между центробежной силой, связанной с вращением электрона, и силой электростатического притяжения электрона к ядру. Для восстановления равновесия электрон, должен переместиться ближе к ядру. Таким образом, электрон должен непрерывно излучая электромагнитную энергию и двигаясь по спирали, будет приближаться к ядру. Исчерпав всю свою энергию, он должен «упасть» на ядро, - и атом прекратит свое существование. Этот вывод противоречит реальным свойствам атомов, которые представляют собой устойчивые образования и могут существовать, не разрушаясь, чрезвычайно долго.
Во-вторых, модель Резерфорда приводила к неправильным выводам о характере атомных спектров. Напомним, что при пропускании через стеклянную или кварцевую призму света, испускаемого раскаленным твердым или жидким телом, на экране, поставленном за призмой, наблюдается так называемый сплошной спектр, видимая часть которого представляет собой цветную полосу, содержащую все цвета радуги*. Это явление объясняется тем, что излучение раскаленного твердого или жидкого тела состоит из электромагнитных волн всевозможных частот. Волны различной частоты неодинаково преломляются призмой и попадают на разные места экрана.
* Спектр простирается и за пределы частот, соответствующих видимому свету, - в ультрафиолетовую (более высокие частоты) и инфракрасную (более низкие частоты) области.
Для получения спектра вместо призмы можно воспользоваться дифракционной решеткой.
- 61 -
Последняя представляет собой стеклянную пластинку, на поверхности которой на очень близком расстоянии друг от друга нанесены тонкие параллельные штрихи (до 1500 штрихов на 1 мм). Проходя сквозь такую решетку, свет разлагается и образует спектр, аналогичный полученному при помощи призмы, дифракция присуща всякому волновому движению и служит одним из основных доказательств волновой природы света.
Рис 3. Схема атомного спектра водорода в видимой области.
(На рисунке указаны принятые обозначения отдельных линий и длины волн).
Излучение, испускаемое твердыми телами или жидкостями, всегда дает сплошной спектр. Излучение, испускаемое раскаленными газами и парами, в отличие от излучения твердых тел и жидкостей, содержит только определенные длины волн. Поэтому вместо сплошной полосы на экране получается ряд отдельных цветных линий, разделенных темными промежутками. Число и расположение этих линий зависят от природы раскаленного газа или пара. Так, парЫ калия дают спектр, состоящий из трех линий — двух красных и одной фиолетовой; в спектре паров кальция несколько красных, желтых и зеленых линий и т.д. Такие спектры называются линейчатыми. На рис 3 приведено в качестве примера изображение атомного спектра водорода в видимой и близкой ультрафиолетовой области. Тот факт, что атомы каждого элемента дают вполне определенный, присущий только этому элементу спектр, причем интенсивность соответствующих спектральных линий тем выше, чем больше содержание элемента во взятой пробе, широко применяется для определения качественного и количественного состава веществ и материалов. Этот метод исследования называется спектральным анализом.
Как было указано выше, электрон, вращающийся вокруг ядра, должен приближаться к ядру, непрерывно меняя скорость своего движения. Частота испускаемого им света определяется частотой его вращения и, следовательно, должна непрерывно меняться. Это означает, что спектр излучения атома должен быть непрерывным, сплошным, а это не соответствует действительности. Таким образом, теория Резерфорда не смогла объяснить ни существования устойчивых атомов, ни наличия у них линейчатых спектров.
Существенный шаг в развитии представлений о строении атома сделал в 1913 г. Нильс Бор, предложивший теорию, объединяющую ядерную модель атома с квантовой теорией света.
23. Квантовая теория света.
В 1900 г. Планк* показал, что способность нагретого тела к лучеиспусканию можно правильно количественно описать, только предположив, что лучистая энергия испускается и поглощается телами не непрерывно, а дискретно, т.е. отдельными порциями — квантами. При этом ......
* Макс Планк (1858 — 1947) — крупный немецкий физик, лауреат Нобелевской премии. Основные труда Планка посвящены термодинамике и тепловому излучению. Введенное Планком представление о квантовом характере излучения и поглощения энергии сыграло весьма важную роль в развитии современного естествознания.
- 62 -
Рис. 4. Схема установки для наблюдения фотоэлектрического эффекта:
М — пластинка испытуемого металла; С — металлическая сетка; Б — источник постоянного электрического напряжения; Г — гальванометр.
.... При этом энергия Е каждой такой порции связана с частотой излучения ν соотношением, получившим название уравнения Планка:
E = h ν
Здесь коэффициент пропорциональности h, так называемая постоянная Планка, - универсальная константа, равная 6,626·10-34 Дж·с.
Сам Планк долгое время полагал, что испускание и поглощение света квантами есть свойство излучающих тел, а не самого излучения, которое способно иметь любую энергию и поэтому могло бы поглощаться непрерывно. Однако в 1905 г. А. Эйнштейн, анализируя явление фотоэлектрического эффекта, пришел к выводу, что электромагнитная (лучистая) энергия существует только в форме квантов и что, следовательно, излучение представляет собой поток неделимых материальных «частиц» (фотонов), энергия которых определяется уравнением Планка.
Фотоэлектрическим эффектом называется испускание металлом электронов под действием падающего на него света. Это явление было подробно изучено в 1888 — 1890 гг. А. Г. Столетовым*. Схема установки для измерения фотоэффекта изображена на рис 4. Если поместить установку в вакуум и подать на пластинку М отрицательный потенциал, то тока в цепи наблюдаться не будет, поскольку в пространстве между пластинкой и сеткой нет заряженных частиц, способных переносить электрический ток. Но при освещении пластинки источником света гальванометр обнаруживает возникновение тока (называемого фототоком), носителями которого служат электроны, вырываемые светом из металла.
Оказалось, что при изменении интенсивности освещения изменяется только число испускаемых металлом электронов, т.е. сила фототока. Но максимальная кинетическая энергия каждого вылетевшего из металла электрона не зависит от интенсивности освещения, а изменяется только при изменении частоты падающего на металл света. Именно с увеличением длины волны (т.е. с уменьшением частоты**) энергия испускаемых металлом электронов уменьшается, а затем, при определенной для каждого металла длине волны, фотоэффект исчезает и не проявляются даже при очень высокой интенсивности освещения. Так, при освещении красным или оранжевым светом натрий не проявляется фотоэффекта и начинает испускать электроны только при длине волны, меньшей 590 нм (желтый свет), у лития фотоэффект обнаруживается при еще меньших длинах волн, начиная с 516 нм (зеленый свет), а вырывание электронов из платины под действием видимого света вообще не происходит и начинается только при облучении платины ультрафиолетовыми лучами.
* Александр Григорьевич Столетов (1839-1896) — крупный русский физик, профессор Московского университета. Осуществил исследование магнитных свойств железа, имевшее большой теоретическое и практическое значение. Установил основные законы фотоэлектрического эффекта, показал возможность непосредственного превращения световой энергии в электрическую. В своих работах философского содержания выступал как убежденный материалист.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.