М. Рябов - Сборник основных формул по химии для ВУЗов Страница 24

Тут можно читать бесплатно М. Рябов - Сборник основных формул по химии для ВУЗов. Жанр: Научные и научно-популярные книги / Химия, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

М. Рябов - Сборник основных формул по химии для ВУЗов читать онлайн бесплатно

М. Рябов - Сборник основных формул по химии для ВУЗов - читать книгу онлайн бесплатно, автор М. Рябов

Закон Генри-Дальтона: растворимость газа в жидкости прямо пропорциональна его давлению над жидкостью: Ci = kpi, где Ci – концентрация раствора газа в жидкости; k – коэффициент пропорциональности, зависящий от природы газа.

Как правило, при растворении газа в жидкости выделяется теплота (к < 0), поэтому с повышением температуры растворимость уменьшается.

Формула Сеченова:

X =Х0е-kСэл

где X и Х0 – растворимость газа в чистом растворителе и растворе электролита с концентрацией С.

3.2. Коллигативные свойства растворов неэлектролитов

Коллигативными (коллективными) называются свойства растворов относительно свойств растворителя, зависящие главным образом от числа растворенных частиц.

Давление насыщенного пара разбавленных растворов

Пар, находящийся в равновесии с жидкостью, называется насыщенным. Давление такого пара р0 называется давлением или упругостью насыщенного пара чистого растворителя.

Первый закон Рауля. Парциальное давление насыщенного пара компонента раствора прямо пропорционально его мольной доле в растворе, причем коэффициент пропорциональности равен давлению насыщенного пара над чистым компонентом:

pi = pi0 xi

Для бинарного раствора, состоящего из компонентов А и В: относительное понижение давления пара растворителя над раствором равно мольной доле растворенного вещества и не зависит от природы растворенного вещества:

Растворы, для которых выполняется закон Рауля, называют идеальными растворами.

Давление пара идеальных и реальных растворов

Если компоненты бинарного (состоящего из двух компонентов) раствора летучи, то пар над раствором будет содержать оба компонента. Общее Состав, мол. доли в (хв) давление пара:

p = pA0xA + pB0xB = pA0(1 – xB) + pB0xB = pA0 – xB(pA0 – pB0)

Если молекулы данного компонента взаимодействуют друг с другом сильнее, чем с молекулами другого компонента, то истинные парциальные давления паров над смесью будут больше, чем вычисленные по первому закону Рауля (положительные отклонения, ΔН тв > 0). Если же однородные частицы взаимодействуют друг с другом слабее, чем разнородные, парциальные давления паров компонентов будут меньше вычисленных (отрицательные отклонения, ΔHраств < 0).

Температура кристаллизации разбавленных растворов

Второй закон Рауля. Понижение температуры замерзания раствора ΔТзам прямо пропорционально моляльной концентрации раствора: ΔTзам = Т0 – Т = КСm, где Т0 – температура замерзания чистого растворителя; Т – температура замерзания раствора; К – криоскопическая постоянная растворителя, град/кг моль,

Т02 – температура замерзания растворителя; М – молекулярная масса растворителя, ΔНпл – мольная теплота плавления растворителя.

Температура кипения разбавленных растворов

Температура кипения – температура, при которой давление насыщенного пара становится равным внешнему давлению.

Повышение температуры кипения растворов нелетучих веществ ΔТК = Тк – Тк0 пропорционально понижению давления насыщенного пара и прямо пропорционально моляльной концентрации раствора: ΔТкип = ЕСm, где Е – эбулиоскопическая постоянная растворителя, град/кг • моль,

Осмотическое давление разбавленных растворов

Осмос – преимущественно одностороннее прохождение молекул растворителя через полупроницаемую мембрану в раствор или молекул растворителя из раствора с меньшей концентрацией в раствор с большей концентрацией.

Давление, которое необходимо приложить к раствору, чтобы предотвратить перемещение растворителя в раствор через мембрану, разделяющую раствор и чистый растворитель, численно равно осмотическому давлению π (Па).

Принцип Вант-Гоффа: осмотическое давление идеального раствора равно тому давлению, которое оказывало бы растворенное вещество, если бы оно, находясь в газообразном состоянии при той же температуре, занимало бы тот же объем, который занимает раствор: π = CRT.

Изотонические растворы – два раствора с одинаковым осмотическим давлением (π1 = π2).

Гипертонический раствор – раствор, осмотическое давление которого больше, чем у другого (π1 > π2).

Гипотонический раствор – раствор, осмотическое давление которого меньше, чем у другого (π1 < π2).

3.3. Растворы электролитов

Степень диссоциации α – отношение числа молекул n, распавшихся на ионы, к общему числу молекул N:

Изотонический коэффициент i Ван-Гоффа – отношение фактического числа частиц в растворе электролита к числу частиц этого раствора без учета диссоциации.

Если из N молекул продиссоциировало n, причем каждая молекула распалась на ν ионов, то

Для неэлектролитов i = 1.

Для электролитов 1 < ≤ ν.

3.4. Коллигативные свойства растворов электролитов:

Теория электролитической диссоциации Аррениуса

1. Электролиты в растворах распадаются на ионы – диссоциируют.

2. Диссоциация является обратимым равновесным процессом.

3. Силы взаимодействия ионов с молекулами растворителя и друг с другом малы (т. е. растворы являются идеальными).

Диссоциация электролитов в растворе происходит под действием полярных молекул растворителя; наличие ионов в растворе предопределяет его электропроводность.

По величине степени диссоциации электролиты подразделяются на три группы: сильные (α ≥ 0,7), средней силы (0,3 < α < 0,7) и слабые (α ≤ 0,3).

Слабые электролиты. Константа диссоциации

Для некоторого электролита, распадающегося в растворе на ионы в соответствии с уравнением:

АаВb ↔ аАx- + bВy+

Для бинарного электролита:

Для разбавленных растворов можно считать, что (1 – α) = 1 и К ≈ α2С.

– закон разбавления Оствальда: степень диссоциации слабого электролита возрастает с разбавлением раствора.

Активность растворенного вещества – эмпирическая величина, заменяющая концентрацию, – активность (эффективная концентрация) а, связанная с концентрацией через коэффициент активности f, который является мерой отклонения свойств реального раствора от идеального:

а = fC; а+ = f+С+; а_ = f_C_.

Для бинарного электролита:

– средняя активность электролита;

– средний коэффициент активности.

Предельный закон Дебая-Хюккеля для бинарного электролита: lg f = -0,51z 2I ½, где z – заряд иона, для которого рассчитывается коэффициент активности;

I – ионная сила раствора I = 0,5Σ(Сiri2).

4. Электропроводность растворов электролитов

Проводники I рода – металлы и их расплавы, в которых электричество переносится электронами.

Проводники II рода – растворы и расплавы электролитов с ионным типом проводимости.

Электрический ток есть упорядоченное перемещение заряженных частиц.

Всякий проводник, по которому течет ток, представляет для него определенное сопротивление R, которое, согласно закону Ома, прямо пропорционально длине проводника l и обратно пропорционально площади сечения S; коэффициентом пропорциональности является удельное сопротивление материала ρ – сопротивление проводника, имеющего длину 1 см и сечение 1 см2:

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.