Б Кузнецов - Эйнштейн (Жизнь, Смерть, Бессмертие) Страница 13
Б Кузнецов - Эйнштейн (Жизнь, Смерть, Бессмертие) читать онлайн бесплатно
"Предложение верно, - пишет Эйнштейн, - если оно выведено внутри некоторой логической системы по принятым правилам. Содержание истины в системе определяется надежностью и полнотой ее соответствия с совокупностью ощущений" [5].
5 Там же, 263.
Если учесть бесконечную сложность мироздания, то отсюда следует, что никакая логическая непротиворечивая и согласованная с рядом наблюдений теория не может быть гарантирована от дальнейших "актов удивления" и перехода к иной теории.
Математика и реальность
Все, что мы знаем о реальности, исходит из опыта и завершается им.
Эйнштейн
Геометрия сохраняет характер математической науки, так как вывод ее теорем из аксиом останется по-прежнему чисто логической задачей; но в то же время она становится и физической наукой, так как ее аксиомы содержат утверждения, относящиеся к объектам природы, утверждения, справедливость которых может быть доказана только опытом.
Эйнштейн
Одной из самых важных эпистемологических предпосылок пут, приведшего Эйнштейна к теории относительности, было его представление о соотношении между математикой и реальностью. Это представление было сформулировано после появления теории относительности, по оно существовало и раньше и было условием появления специальной и особенно общей теории относительности.
В цюрихском Политехникуме Эйнштейн усердно посещал физическую лабораторию. Это увлечение экспериментом очень характерно для юности Эйнштейна и было одним из путей к кристаллизации идей относительности. Вопрос не сводится к ознакомлению с экспериментами, ставшими впоследствии исходным пунктом теории относительности. Экспериментальные увлечения Эйнштейна указывают и па другую сторону дела, тесно связанную с характером его физического и математического мышления.
Речь идет о физической интуиции, предваряющей логические и математические конструкции. Следует расшифровать здесь несколько неопределенное понятие интуиции, которое без расшифровки может ассоциироваться с совсем иным кругом идей. Мы можем судить о механизме научного мышления Эйнштейна, помимо прочего, по одному документу, очень важному для истории и психологии научного творчества в целом и для характеристики
58
психологии творчества Эйнштейна в особенности. В 1945 г. Жак Адамар обратился к ряду математиков с вопросом, какими образами и ассоциациями заполнено их сознание при поисках математических решений. Эйнштейн ответил на этот вопрос следующими замечаниями:
"Слова, так как они пишутся или произносятся, по видимому, не играют какой-либо роли в моем механизме мышления. В качестве элементов мышления выступают более или менее ясные образы и знаки физических реальностей. Эти образы и знаки как бы произвольно порождаются и комбинируются сознанием. Существует, естественно, некоторая связь между этими элементами мышления и соответствующими логическими понятиями. Стремление в конечном счете прийти к ряду логически связанных одно с другим понятий служит эмоциональным базисом достаточно неопределенной игры с упомянутыми выше элементами мышления. Психологически эта комбинационная игра является существенной стороной продуктивного мышления. Ее значение основано прежде всего на некоторой связи между комбинируемыми образами и логическими конструкциями, которые можно представить с помощью слов или символов и таким образом получить возможность сообщить их другим людям" [1].
Но логические конструкции, которые можно выразить словами и математическими символами, - это вторая ступень. Первоначально в сознании нет ничего, кроме возникающих и ассоциирующихся образов физических реальностей. Эти образы приближаются к зрительным и моторным представлениям.
"У меня упомянутые выше элементы мышления - зрительного и некоторого мышечного типа. Слова и другие символы я старательно ищу и нахожу на второй ступени, когда описанная игра ассоциаций уже установилась и может быть по желанию воспроизведена. Как уже сказано, игра с первоначальными элементами мышления нацелена на достижение соответствия с логической связью понятий" [2].
1 Einstein A. Ideas and opinions. London, 1956, p. 25-26.
2 Ibid., p. 26.
59
Зрительные и мышечные элементы, вступающие в ассоциативную игру, по-видимому, были ближе всего к кинетическим и динамическим представлениям. Неопределенный зрительный образ движущегося или меняющего свою форму тела и неопределенное мышечное ощущение действующей силы - таков был, как можно думать, тип исходных элементов, которые мыслитель вызывал в своем сознании, чтобы начать ассоциативную игру. В последней комбинировались, сближались и противопоставлялись образы, иногда близкие физическим реальностям, а иногда игравшие роль условных символов, соответствующих более сложным, в том числе немеханическим, реальностям. Это были образы волнующегося моря, символизирующего, а отчасти описывающего недоступные непосредственному зрительному представлению электромагнитные колебания, образы движущихся градуированных стержней, изображающих системы отсчета, и т.д.
На второй ступени - уже не интуитивной, а логической - мыслитель как бы слышит слова, выражающие понятия, или видит написанными эти слова либо математические символы. У Эйнштейна зрительные и моторные образы первоначальной ассоциативной стадии сменялись слуховыми представлениями слов, передающих логические конструкции. На вопрос Адамара о господствующем типе "внутренних слов" Эйнштейн отвечал:
"Зрительные и моторные. На той ступени, когда полностью вступают слова, они в моем случае чисто слуховые. Но они, как уже сказано, включаются только на второй ступени" [3].
3 Einstein. Ideas and Opinions, p. 25-26.
Описанный механизм мышления был, по-видимому, в наибольшей степени приспособлен для конструирования логических цепей, допускающих экспериментальную проверку.
Для Эйнштейна понятия не связаны непосредственно с наблюдениями и могут не обладать непосредственным физическим смыслом. Физический смысл они подчас приобретают в результате сложного и многоступенчатого конструирования других понятий. Но в конце концов логические выводы становятся сопоставимыми с наблюдениями и это придает физический смысл всей цепи рассуждений. Как уже говорилось, логика сочетается при таком конструировании с интуицией. Последняя как бы предвосхищает на каждом этапе физические выводы конструируе
60
мой теории. Каждый раз, когда логический анализ оказывается на распутье, физическая интуиция толкает его к таким дальнейшим шагам, которые делают более близкой экспериментальную проверку. Подобно свету, отражающемуся в сложных системах зеркал так, что путь его требует наименьшего времени, мысль Эйнштейна движется от одного понятия к другому по линии кратчайшего подхода к экспериментальной проверке всей цепи рассуждений, к понятиям, которые допускают такую проверку. При этом Эйнштейн руководствуется физической интуицией. Ее можно было бы назвать "экспериментальной интуицией", имея в виду догадку о наиболее близком пути к эксперименту, позволяющему теории обрести физическую содержательность. Интуицию питало то обстоятельство, что Эйнштейн чувствовал себя в своей стихии в мире понятий и образов экспериментальной физики. Зеркала, отражающие свет, контуры, по которым пробегает ток, жесткие стержни, соединяющие движущиеся части приборов, - все эти образы и понятия обрастали у Эйнштейна множеством зрительных и моторных ассоциаций, были живыми, подвижными, готовыми к новым сочетаниям.
Гений Эйнштейна выражался в способности связывать, сочетать, иногда отождествлять понятия, далеко отстоящие одно от другого. В мозгу мыслителя каждое понятие (на предшествующей стадии - образ) окружено облаком виртуальных связей или полем сил, которые захватывают другие понятия, иногда реконструируют их, связывают с данным понятием, вызывают порождения новых понятий и аннигиляцию некоторых старых. Колоссальная мощность такого облака, напряженность такого поля, радиус действия таких сил - признаки гения.
В конце концов экспериментальная интуиция Эйнштейна стала математической интуицией. Мы встречаемся в его работах с поразительно изящными (т.е. приводящими к большому числу выводов без дополнительных допущений) и мощными приемами. В основе выбора этих математических приемов лежит, как мы увидим, выявление закономерностей, допускающих экспериментальную проверку. Но это появилось позже, когда физическая интуиция уже привела Эйнштейна к новому по сравнению с классической физикой разделению понятий
61
на формальные и физически содержательные, допускающие в принципе сопоставление с наблюдениями. До этого, в Цюрихе, у Эйнштейна не было критериев для выбора той или иной математической дисциплины или проблемы.
"Я видел, - пишет Эйнштейн, - что математика делится на множество специальных областей, и каждая из них может занять всю отпущенную нам короткую жизнь. И я увидел себя в положении Буриданова осла, который не может решить, какую же ему взять охапку сена. Дело было, очевидно, в том, что моя интуиция в области математики была недостаточно сильна, чтобы уверенно отличить основное и важное от остальной учености, без которой еще можно обойтись. Кроме того, и интерес к исследованию природы, несомненно, был сильнее; мне, как студенту, не было еще ясно, что доступ к более глубоким принципиальным проблемам в физике требует тончайших математических методов. Это стало выясняться лишь постепенно, после многих лет самостоятельной научной работы. Конечно, и физика была разделена на специальные области, и каждая из них могла поглотить короткую трудовую жизнь, так и не удовлетворив жажды более глубокого познания. Огромное количество недостаточно увязанных эмпирических фактов действовало и здесь подавляюще. Но здесь я скоро научился выискивать то, что может повести в глубину, и отбрасывать все остальное, все то, что перегружает ум и отвлекает от существенного" [4].
Жалоба
Напишите нам, и мы в срочном порядке примем меры.