Вернер Альбринг - Городомля: Немецкие исследователи ракет в России Страница 23
Вернер Альбринг - Городомля: Немецкие исследователи ракет в России читать онлайн бесплатно
Тогда нас интересовали течения в воде, которые можно было бы сравнить со сверхзвуковым потоком воздуха. Скорость, аналогичная сверхзвуковой скорости в воздухе, в плоской воде имеет очень низкие значения. При глубине воды в десять сантиметров она составляет только один метр в секунду. Чтобы получить аналогичную картину течения при сверхзвуковой скорости, нужно определенное время пропускать воду через сопло Лаваля. Так делали в своих первых опытах Рябушинский и Прайсверк. Однако господин Фризер установил, что длинное сопло Лаваля неизбежно искажает картину течения из-за трения по всей его длине. Из-за постоянно колеблющегося потока мы не могли измерить местную высоту воды с точностью до десятой миллиметра.
Однажды Гельмут Фризер удивил меня улучшенным сглаженным течением, заменив сопло Лаваля коротким подтопленным водосливом, который используют гидротехники. Таким образом, можно было получить необходимую точность измерения. Вскоре мы использовали канал для изучения течений, изменяющихся во времени. Нам нужна была информация о силах и моментах, возникающих на острие ракеты при отрыве потока от корпуса.
При оценке экспериментов нельзя было забывать об известных основных несовершенствах аналогии. Речь идет о следующем: в газодинамических уравнениях, которые устанавливают связь между давлением, плотностью и температурой, появляется некая физическая величина, которая обозначается греческой буквой «k». Ее численное значение определяется отношением удельного тепла при постоянных давлениях и температурах, и для воздуха составляет примерно 1,4. Но для плоских водных течений аналогичная величина является неизменной и равна 2,0. Несмотря на то, что при большинстве применений, действие этой разницы незначительно, мы должны были каждый раз относится к измерением очень критически.
Другое несовершенство состояло в свободной водной поверхности, которую разрешается использовать в качестве аналогии обтеканию газовым потоком цилиндрических тел. Это не удается столь же просто сделать для конусообразных тел, таких, например, как корпус ракеты. Он должен быть заменен контуром плоского цилиндрического тела с равной формой поперечного сечения. Эксперименты в плоском водном канале, безусловно, являются значительной помощью при предварительном определении характера обтекания, однако затем необходимы исследования в сверхзвуковой аэродинамической трубе для более точных промеров области течения и определения его свойств.
Уже при моем первом посещении Москвы полковник Победоносцев предложил использовать для привода аэродинамической трубы компрессор приводного двигателя самолета типа «Jumo-004». Освальд Конрад исследовал эту возможность и установил, что плотность воздуха, достижимая с помощью этого компрессора, была бы недостаточна для продувки аэродинамической трубы со сверхзвуковой скоростью. Памятуя о скромной энергетической базе на нашем острове, мы были вынуждены использовать для аэродинамической трубы только те мощности, которые были у нас в наличии. Мы решили откачать до вакуума баллон большого объема, а затем через сопло Лаваля пустить в баллон воздух с атмосферным давлением. При этом за соплом Лаваля достигалась бы сверхзвуковая скорость. При такой конструкции для создания в баллоне безвоздушного пространства достаточно незначительной приводной мощности насоса. Насос работал несколько часов до тех пор, пока давление в баллоне не становилось очень маленьким. Входящий со сверхзвуковой скоростью поток заполнял баллон несколько минут. Но и этого короткого времени нам было достаточно для измерения температур, давлений, сил и моментов. Все они преобразовывались в электрические величины и автоматически регистрировались приборами.
Весь объем работ по вводу сверхзвуковой аэродинамической трубы был настолько велик, что понадобилась помощь других секторов. Доктор Коерманн из механического сектора сконструировал электрические регистрирующие скоростные аэродинамические весы для измерения подъемной силы, сопротивления и момента вокруг поперечной оси. Эрих Апель, в значительной степени при помощи механика-умельца господина Фидлера, изготовил эти весы в мастерских острова. Нам сделали замечательный измерительный прибор. Второй из конструкторских секторов, возглавляемый господином Яффке, взял на себя все конструкторские работы в аэродинамической трубе. Мы, аэродинамики, определили основные размеры и рассчитали контуры нескольких сопел Лаваля. Но из центрального института в Москве пришло концептуальное изменение проекта: мы должны работать не с вакуумным баллоном, а пропускать воздух на измерительный участок через сопло Лаваля из сосуда под большим давлением. Большой сосуд под давлением подсоединили к общей батарее баллонов. Большие поршневые компрессоры в течение нескольких часов закачивали воздух в батарею баллонов до тех пор, пока на манометре достигалось давление в 100, а иногда в 150 атмосфер. Но время для замеров в этом варианте было также очень коротким и ограничивалось несколькими минутами. Поршневые компрессоры приводились электродвигателями. На нашей маленькой электростанции теперь в качестве привода электрогенератора использовался новый дизель-мотор. Этот агрегат вытеснил старый локомотив, топившийся дровами. Общий объем затрат был очень большим, и наша аэродинамическая труба заработала только в последний год нашего пребывания на острове. Тогда мы смогли провести ряд измерений на моделях конусообразных ракет, измерить нестационарную теплопередачу на корпусе и подтвердить наши расчеты. В самом последнем разрабатываемом нами проекте, а именно в противовоздушной ракете, уже было возможно, параллельно с проектной работой, измерять силы и моменты в аэродинамической трубе.
Однако вернусь к этапу сооружения аэродинамической трубы. Энергия сжатого воздуха будет только тогда использоваться эффективно, когда между батареей под давлением и соплом Лаваля стоит клапан, который открывается на очень короткое время замера и потом опять закрывается. Господин Яффке поручил спроектировать и изготовить этот клапан старейшему конструктору господину Фигеру. Это было довольно сложное приспособление. Господин Фигер объяснял мне принцип его действия по конструкторским чертежам. При этом я заметил, что у него довольно неправильные представления о газодинамическом характере сжатого воздуха: господин Фигер разработал собственную теорию о сжимаемости, которую я лично признать не мог. Я заключил, что с такими неправильными воззрениями на основной физический процесс вряд ли можно изготовить хороший клапан. Я был против его конструкции и рассказал об этом господину Яффке и русскому главному инженеру господину Курганову. Но главный инженер настоял на том, чтобы конструкция господина Фигера была реализована. Клапан был построен и превосходно выдержал испытания, наилучшим образом соответствуя всем требованиям. Я, как пользователь аэродинамической трубы, мог быть доволен. Я много размышлял над тем, в чем состояла ошибочность моей оценки конструкции, и пришел к заключению, что в данном случае большой конструкторский опыт и интуитивно правильная инженерная мысль компенсировали недостатки понимания физического процесса.
Уже через четырнадцать дней после пробного пуска трубы мы должны были соорудить шумозащитный корпус вокруг до сих пор открытого участка измерения. Это было необходимо, так как свободная струя шумела ужасно. Даже с шумозащищимающей корпусом вокруг испытательного стенда стоял невообразимый грохот.
К пробному пуску я установил в разных местах подводящего трубопровода манометры. Они должны были регистрировать давление на батарее сосудов, поворотных коленах, ответвлениях и в различных местах трубы. Возле каждого манометра сидел наблюдатель, который после сигнального светового импульса из пункта управления, должен был синхронно записать давление. Затем я посмотрел на результаты замеров, они полностью соответствовали ожиданиям — за исключением одного места наблюдения, где стояло несколько манометров, и было два наблюдателя. Они сообщили, что сразу после подачи сжатого воздуха, давление от наивысшего значения так быстро упало до нуля, что было невозможно его записать. Я проверил манометры, они были в порядке. Все места стыков на трубопроводе были уплотнены. Я собрал все протоколы, уселся на скамеечку, сравнивал полученные данные и размышлял. Ко мне подошел старший из двух наблюдателей, господин Цулинский, мастер из наших мастерских, относящихся к сектору аэродинамики. «Прежде, чем Вы сломаете голову, я хочу раскрыть загадку», — начал он. Я оторвался от листков протоколов и услышал: «Когда канал запустился, раздался страшный грохот, и мы думали, что все взорвалось и полетело вверх». Он добавил, осознавая свою вину: «Извините, пожалуйста». Я дружески ему улыбнулся, как будто проблема была решена, и пожал ему руку. Никто из нас раньше не работал в сверхзвуковой трубе и не слышал этого ужасающего грохота.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.