Рафаэль Лаос-Бельтра - Том 28. Математика жизни. Численные модели в биологии и экологии.
- Категория: Научные и научно-популярные книги / Математика
- Автор: Рафаэль Лаос-Бельтра
- Год выпуска: -
- ISBN: -
- Издательство: -
- Страниц: 27
- Добавлено: 2019-02-15 11:39:53
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту free.libs@yandex.ru для удаления материала
Рафаэль Лаос-Бельтра - Том 28. Математика жизни. Численные модели в биологии и экологии. краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Рафаэль Лаос-Бельтра - Том 28. Математика жизни. Численные модели в биологии и экологии.» бесплатно полную версию:Жизнь — одно из самых прекрасных и сложных явлений на планете, изучением которого с начала XX века занимается не только одна биология. Физики, а затем и математики обнаружили, что некоторые биологические явления можно описать с помощью математического языка. Так родилась новая дисциплина — математическая биология, или биоматематика. Благодаря ей сегодня можно получить ответы на множество важных вопросов, касающихся биологии и биомедицины. Эта книга представляет собой панорамный обзор различных явлений, которые изучает биоматематика.
Рафаэль Лаос-Бельтра - Том 28. Математика жизни. Численные модели в биологии и экологии. читать онлайн бесплатно
Рафаэль Лаос-Бельтра
«Мир математики»
№ 28
«Математика жизни.
Численные модели в биологии и экологии»
Предисловие
Жизнь — одно из самых прекрасных и сложных явлений на планете, изучением которого с начала XX века занимается далеко не одна биология. Физики, а затем и математики обнаружили ряд биологических явлений, которые можно описать на математическом языке. Николай Рашевский, Карл Людвиг фон Берталанфи и Алан Тьюринг положили начало плодотворному союзу математического формализма и науки о жизни, а компьютеры позволили ученым проводить количественные исследования биологических явлений. Так родилась новая дисциплина — математическая биология, или биоматематика. Математическая биология внесла и продолжает вносить свой вклад в развитие биологии как посредством теоретического изучения динамических систем (мозга, муравейника или экосистем), так и благодаря решению практических задач в ходе изучения раковых заболеваний, эпидемий СПИДа или свиного гриппа.
Сегодня ответы на множество вопросов биологии и биомедицины можно дать с помощью математического анализа. Так, размножение раковых клеток в опухолях определенного типа описывается функцией Гомпертца. Во многих процессах в сфере биотехнологий при мониторинге биореакторов используются дифференциальные уравнения. Даже такие проблемы современности, как возможное изменение климата Земли, изучаются с помощью математических моделей, в частности климатической модели Лоренца.
В этой книге представлен панорамный обзор различных аспектов биоматематики.
В первой главе мы говорим об основных достижениях этой науки и ее историческом развитии. Во второй главе показана возможность использования дифференциальных уравнений для описания динамики биологических явлений, то есть явлений, благодаря которым становится возможным сохранение жизни. Эти уравнения очень важны для человечества, так как позволяют решить бесчисленное множество задач, от демографических проблем, о которых писал еще Мальтус в 1798 году, до определения возраста ископаемых посредством радиоуглеродного анализа (этот метод предложил Уиллард Либби в 1950 году).
Математика, конечно же, не смогла остаться в стороне от еще одного притягательного явления. Хаос, о котором мы поговорим в третьей главе, присутствует повсеместно, будь то рост населения, поведение биржевых индексов или электроэнцефалограмма человека. В этой же главе мы рассмотрим еще одну тему, связанную с хаосом, — фракталы, их присутствие в природе (в частности, в виде снежинок или ветвей деревьев), способы графического представления фракталов с помощью компьютера. Хаос и фракталы нельзя изучить без краткого рассмотрения комплексных чисел, а не имея представления о комплексных числах, невозможно понять даже самые яркие и наглядные особенности мира фракталов.
В четвертой главе показано, что математическая биология по большей части основана на использовании числовых таблиц, или матриц, и основную роль в ней играют операции над матрицами. В завершение главы мы рассмотрим законы Менделя и познакомимся с одним из важнейших понятий биологии — полным факторным экспериментом. В пятой главе освещается еще одно математическое понятие, играющее особую роль благодаря множеству способов применения, — векторы. Мы опишем использование векторов в биомеханике, при моделировании нейронных сетей и решении систем линейных уравнений.
И в завершение удивительного путешествия вы узнаете о взаимосвязи математики и экологии. Сегодня ни один проект по охране окружающей среды не обходится без использования формального математического аппарата. В шестой главе мы определим понятие экосистемы и представим матричные популяционные модели, особенно полезные при изучении и сохранении популяций. Отдельно мы рассмотрим одну из классических моделей математической биологии — модель «хищник — жертва» Лотки — Вольтерры[1]. Следующий дискуссионный вопрос, на котором мы остановимся, звучит так: ждет ли нас глобальное изменение климата? Вы увидите, что проблема изменения климата имеет математическую природу, поэтому ответ на поставленный вопрос нельзя дать без знания климатических моделей и применяемого в них математического аппарата. Книга завершается анализом «Маргариткового мира» — математической модели, созданной Джеймсом Лавлоком в 1980-е годы на основе гипотезы Геи. Эта модель бросает вызов дарвинизму и классическим представлениям о сохранении жизни на планете.
Глава 1
Математическая биология в исторической перспективе
В начале XX века Россия напоминала бурлящий котел. Глубокий экономический кризис и социальное недовольство, возникшие после поражения в русско-японской войне 1904–1905 годов и начала Первой мировой войны с Германией в 1914 году, привели к Октябрьской революции. Из-за этих событий физик-теоретик украинского происхождения Николай Рашевский (1899–1972), который сегодня считается создателем математической биологии, вместе с супругой Эмилией покинул страну. Сменив несколько государств, в 1924 году Рашевские осели в США.
Рождение математической биологииОказавшись на американской земле, Рашевский приступил к работе в исследовательской лаборатории компании Westinghouse, где занялся изучением деления клеток. Таким образом, деление клеток впервые было рассмотрено с точки зрения физики и математики — подобный подход в те годы считался невероятно передовым.
В 1934 году Николай Рашевский (или, как его стали называть к этому времени, Николас Рашевски) получил должность старшего преподавателя кафедры физиологии Чикагского университета. Вскоре благодаря этому ученому произошли два события, имевшие большое значение для развития математической биологии.
В 1938 году была опубликована его первая научная статья по биоматематике, знаменитая «Биофизическая математика: физико-математические основы биологии».
В 1939 году Рашевски создал первый научный журнал, посвященный исследованиям в математической биологии, — The Bulletin of Mathematical Biology («Вестник математической биологии»).
С тех пор математическая биология прошла долгий и непростой путь, пока наконец не обрела статус полноценной научной дисциплины.
Николас Рашевски основал Общество математической биологии, а в 1939 году стал редактором первого журнала по этой дисциплине. Первоначальное название журнала — The Bulletin of Mathematical Biophysics («Вестник математической биофизики») — позднее сменилось на The Bulletin of Mathematical Biology («Вестник математической биологии»).
В последующие годы Рашевски занимался теоретической работой и применил теорию множеств и логику высказываний в исследованиях биологических систем. Он изучал различные общества и способы организации живых существ, а также иерархии, которые они образуют. Сегодня ответы на стоявшие перед ним вопросы кажутся очевидными: рассмотрим, к примеру, последовательность молекулы —> клетки —> ткани —> органы —> системы —> индивид —> популяция. Рашевски создал теорию биологических отношений — реляционную биологию, а также ввел понятие «множество организмов». Все эти открытия до недавнего времени оставались незамеченными большинством биологов, которых в основном интересовали полевые исследования или работа в лаборатории. Подлинный размах и возможности теоретического аппарата, терпеливо выстроенного Рашевски, стали очевидны лишь с возникновением так называемой биологии сложных систем. А развитие этой дисциплины, в свою очередь, было бы невозможным без распространения компьютеров.
Наверное, одной из важнейших особенностей первого этапа развития математической биологии, который мы будем дальше называть этапом зарождения биоматематики, стало влияние на нее физики. Это неудивительно, если учесть, что в 1921 году Рашевски преподавал теорию относительности в Праге. Подобно Эйнштейну, посвятившему последние годы жизни работе над «единой теорией», в 1960-е Рашевски пытался создать единую теорию биологии. Он мечтал выразить на языке математики биологические принципы, описывающие жизнь во всех ее проявлениях, будь то растения, животные или микроорганизмы.
Подобно другим физикам того времени, например Шрёдингеру, Рашевски также задавался вопросом: что такое жизнь? К сожалению, полет его фантазии оборвал сердечный приступ в 1972 году, а ответ на этот вопрос до сих пор не получен, хотя со смерти ученого прошло уже много лет.
Австрийская банкнота с портретом Эрвина Шрёдингера (1887–1961), лауреата Нобелевской премии по физике 1933 года и автора книги «Что такое жизнь?», опубликованной в 1944 году и оказавшей огромное влияние на развитие биологии.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.