Иэн Стюарт - Истина и красота. Всемирная история симметрии. Страница 11

Тут можно читать бесплатно Иэн Стюарт - Истина и красота. Всемирная история симметрии.. Жанр: Научные и научно-популярные книги / Математика, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Иэн Стюарт - Истина и красота. Всемирная история симметрии. читать онлайн бесплатно

Иэн Стюарт - Истина и красота. Всемирная история симметрии. - читать книгу онлайн бесплатно, автор Иэн Стюарт

В этой книге имеются три важных типа обозначений, и два из них я упомяну прямо сейчас. Одно — это наш дружище x, то есть «неизвестное». Этот символ обозначает число, которое мы еще не знаем, но значение которого отчаянно пытаемся найти.

Обозначения второго типа — это числа, набранные более мелким шрифтом и слегка приподнятые над строкой — такие как 2, 3 или же 4. Они говорят, что некоторое другое число надо умножить само на себя указанное число раз. Так, 53 означает 5×5×5, что равно 125, а x2 означает x×x, где x — наш символ для неизвестного числа. Читаются они как «квадрат», «куб», «четвертая степень» и так далее, а все вместе они называются степенями соответствующего числа.

Не имею ни малейшего понятия почему. Просто надо же их как-то называть.

Или вавилонский метод решения квадратных уравнений достался древним грекам по наследству, или же они его открыли заново. Герон, живший в Александрии где-то между 100 годом до и 100 годом от Р.Х., обсуждал типичные задачи «вавилонского» стиля, используя греческую терминологию. Около 100 года Никомах — вероятно, аравитянин из Иудеи — написал книгу под названием Introductio Arithmetica, в которой он отошел от греческой традиции представлять числа геометрическими величинами типа отрезков и площадей. Для Никомаха числа были самостоятельными величинами, а не длинами отрезков. Никомах был пифагорейцем, и это видно из его работы: он имеет дело только с целыми числами и их отношениями и не использует символьных обозначений. Его книга стала стандартным учебником по арифметике на последующее тысячелетие.

Символьные обозначения вошли в алгебру в работах греческого математика Диофанта примерно около 500 года[9]. Единственное, что мы знаем о Диофанте, — это возраст, в котором он умер, да и эти сведения дошли до нас способом, вызывающим сомнения в аутентичности. Греческий сборник задач по алгебре содержит одну следующего содержания: «Диофант провел шестую часть своей жизни мальчиком. Борода его стала расти спустя еще одну двенадцатую часть. Он женился одну седьмую спустя, а его сын родился через пять лет. Сын дожил до половины возраста своего отца, а отец умер через четыре года после сына. Сколько лет было Диофанту, когда он умер?»

Используя методы, подразумевавшиеся этим древним алгебраистом, или же способы более современные, можно вычислить, что ему должно было быть 84 года. Неплохой возраст, если, конечно, задача основана на реальных фактах, что, впрочем, не очевидно.

Это все, что мы знаем о его жизни. Но из позднейших списков и ссылок на них в других документах мы знаем довольно много о его книгах. Он написал одну книгу о многоугольных числах, и часть ее сохранилась. Она организована в эвклидовом стиле, теоремы доказываются на основе логических аргументов, и в целом математическое значение книги невелико. Намного важнее тринадцать книг написанной им Arithmetica. Шесть из них сохранились до наших дней благодаря сделанной в тринадцатом столетии греческой копии с более раннего экземпляра. Еще четыре могли всплыть благодаря рукописи, найденной в Иране, но не все исследователи сходятся в том, что она восходит к Диофанту.

Arithmetica представлена как ряд задач. В предисловии Диофант сообщает, что написал ее в качестве задачника для своих учеников. Он использовал специальный символ для неизвестного, а также отдельные символы для его квадрата и куба; кажется, что это сокращения слов dynamis (мощь, сила) и kybos (куб). Обозначения структурированы не очень хорошо. Сложение у Диофанта записывается просто как размещение символов друг за другом (мы теперь делаем так для умножения), но он использует специальный символ для вычитания. Есть и символ для равенства, хотя он и мог быть введен позднейшим переписчиком.

В основном Arithmetica посвящена решению уравнений. В первой из сохранившихся книг обсуждаются линейные уравнения; в остальных пяти рассматриваются различные виды квадратных уравнений, часто для нескольких неизвестных, а также некоторые специальные кубические уравнения. Характерная особенность состоит в том, что ответы всегда являются целыми или рациональными числами. Сегодня мы называем уравнение диофантовым, если его решения ограничены целыми или рациональными числами. Вот типичный пример из Arithmetica: «Найти такие три числа, что их сумма, а также сумма любых двух из них является полным квадратом». Попробуйте решить — это вовсе не просто. Ответ Диофанта: 41, 80 и 320. Сумма всех трех равна 441 = 212. Попарные суммы равны 41 + 80 = 121 = 112, 41 + 320 = 361 = 192 и 80 + 320 = 400 = 202. Неплохо придумано.

В современной теории чисел диофантовы уравнения занимают центральное место. Знаменитый пример — «последняя теорема» Ферма, которая утверждает, что два полных куба (или две степени с более высоким показателем) в сумме не могут дать ту же степень. С квадратами такое делается совсем просто и восходит к Пифагору, например, 32 + 42 = 52 или 52 + 122 = 132. Но с кубами, четвертыми степенями, пятыми или любыми высшими степенями такое сделать не удается. Примерно в 1650 году Пьер де Ферма небрежно набросал эту гипотезу (без доказательства — несмотря на фигурирующее в названии его имя, он этой теоремы не доказал) на полях своего личного экземпляра Arithmetica. Понадобилось почти 350 лет, пока Эндрю Уайлс — специалист по теории чисел, родившийся в Британии, а ныне живущий в Америке, — доказал, что Ферма был прав.

Историческая традиция в математике иногда оказывается очень долгой.

Алгебра реально появилась на математической сцене в 830 году, когда основное действие переместилось из греческого мира в арабский. В тот год астроном Мохаммед ибн Муса аль-Хваризми написал книгу, озаглавленную «Аль-Джабр в'аль Мукабала», что переводится примерно как «восстановление и упрощение»[10]. Слова эти относятся к стандартным способам обращаться с уравнениями для приведения их к виду, удобному для решения. Из «аль-джабр» происходит современное слово «алгебра». Первый латинский перевод двенадцатого столетия появился под заглавием Ludus Algebrae et Almucgrabalaeque.

Книга аль-Хваризми несет на себе следы влияния предшественников — вавилонян и греков, а также основывается на идеях, появившихся около 600 года у Брахмагупты в Индии. Там объясняется, как решать линейные и квадратные уравнения. Непосредственные последователи аль-Хваризми поняли, как решать и некоторые специальные виды кубических уравнений. К числу этих последователей принадлежали Сабит ибн Корра — врач, астроном и философ, который жил в Багдаде и был при этом язычником, — а также египтянин по имени аль-Хасан ибн аль-Хайсам, которого в позднейшей западной литературе, как правило, называют Альхазен. Но более всех знаменит Омар Хайям.

Полное имя Омара было Гияс аль-Дин Абу'ль-Фатх Омар ибн Ибрахим аль-Нишапури аль-Хайями. Слово «аль-Хайями» буквально переводится как «палаточник», что, по мнению ряда ученых, должно указывать на род занятий его отца Ибрахима. Омар родился в Персии в 1047 году и провел большую часть своей деятельной жизни в Нишапуре. Теперь этот город можно найти на карте рядом с городом Мешхед в провинции Хоросан на северо-востоке Ирана, вблизи границы с Туркменистаном.

Легенда гласит, что в молодости Омар ушел из дома изучать ислам и Коран под руководством прославленного религиозного деятеля Имама Моваффака, жившего в Нишапуре. Там он свел дружбу с двумя другими учениками — Хасаном Сабахом и Низамом аль-Мульком. Друзья поклялись, что если кто-то из них станет богатым и знаменитым — что вполне могло случиться с теми, кто обучался у Моваффака, — то он поделится своим богатством и властью с двумя другими.

Юноши закончили обучение. Год проходил за годом; соглашение оставалось в силе. Низам отправился в Кабул. Омар, не обладавший серьезными политическими амбициями, провел некоторое время в качестве палаточника (другое возможное объяснение его имени аль-Хайями). Страстью его стали науки и математика, и он отдавал им большую часть своего свободного времени. Затем вернулся Низам, который добился для себя должности в правительстве и стал управляющим делами султана Альп Арслана в его резиденции в Нишапуре.

Поскольку Низам достиг богатства и славы, Омар и Хасан напомнили ему о клятве. Низам испросил у султана дозволения помочь своим друзьям и, когда оно было получено, исполнил клятву. Хасан получил хорошо оплачиваемую работу в правительстве, но Омар пожелал просто продолжать свои научные занятия в Нишапуре, где он мог бы возносить молитвы за здоровье и благополучие Низама. Старый школьный друг организовал для Омара правительственное жалованье, дабы тот мог посвящать свое время занятиям. На том и порешили.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.