Микель Альберти - Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума Страница 15
Микель Альберти - Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума читать онлайн бесплатно
Можно сказать, что ответ на вопрос, будет ли узел бесконечным, зависит от числа вершин, через которые проходит нить на каждой стороне сетки. Узел 3 х 2 является бесконечным, так как образован одной нитью. Узел 3 х 3 не является бесконечным, так как состоит из трех нитей. Узел 6 x 4 также не является бесконечным и состоит из двух нитей.
В чем же ключ к решению задачи? Нить смещается влево, вправо, вверх и вниз. Если бы мы не ограничивались одним прямоугольником, а продолжили узел дальше по вертикали и по горизонтали, то смогли бы понять суть проблемы. Рассмотрим узел (3 х 2):
Мы начинаем с точки 1, затем, сместившись на две единицы вправо, попадаем в 3, затем в 2 и наконец снова в 1. Получается числовая последовательность, которая циклически повторяется до бесконечности:
[1, 3, 2] = 1, 3, 2, 1, 3, 2, 1, 3, 2, 1…
На сетке размером (4 х 2) требуется два таких цикла:
В первом случае мы перепрыгиваем через две клетки. Полный цикл завершается после шести шагов, когда мы возвращаемся в исходную точку 1. Мы обошли все цифры 1, 2 и 3. Во втором случае для обхода всех цифр требуется два цикла:
Почему? Потому что 4 делится на 2. Если мы начинаем цикл в точке 1, то мы всегда будем проходить через точки 1 и 3 и никогда — через 2 и 4. Для этого потребуется новый цикл с началом в точке 2. В предыдущем случае цикл завершается после 6 = НОК (3, 2) этапов, и требуется всего один цикл, так как НОД (3, 2) = 1.
Это же происходит и в примере с сеткой 6 x 4, где НОД (6, 4) = 2 цикла, и на сетке 3 х 3, где число циклов равно 3 = НОД (3, 3). Подведем итог.
Теорема: На сетке размером (m, n) число циклов равно НОД (m, n).
Следствие 1: Если m и n — взаимно простые, то на сетке (m, n) имеется единственный бесконечный цикл.
Следствие 2: На сетке размером (m, n) число петель равняется 2 х (m + n).
Задача садовника: равносторонний треугольник как частный случай равнобедренногоПри посадке деревьев в шахматном порядке саженцы располагаются в вершинах воображаемых равносторонних треугольников — это гарантирует, что все деревья будут располагаться друг от друга на одинаковом расстоянии:
Если математику дать задачу о построении подобной сетки с треугольными ячейками, он, скорее всего, начнет искать способ построения равносторонних треугольников, применимый на практике, и буквально со стопроцентной вероятностью предложит евклидово решение, приведенное в предложении 1 книги I «Начал».
Предложение 1 из «Начал» Евклида: построение равностороннего треугольника на данном отрезке АВ.
Для этого построения нужно заменить циркуль веревкой, длина которой равна длине стороны искомого треугольника. Садовод должен обходить участок, проводя дуги окружностей и отмечая точки их пересечения.
Сначала он отметит точки на одной прямой, равноудаленные друг от друга:
Затем, использовав каждую из этих точек в качестве центра окружности, он проведет дуги, которые пересекутся в вершинах равносторонних треугольников:
В результате садовод определит, где нужно посадить деревья.
Так эту задачу решил бы математик. Однако, согласно Жиль-Альберу (1999), садоводы строят сетку из треугольных ячеек следующим образом:
«Посадка в шахматном порядке <…>. Чтобы определить, где следует сажать деревья, достаточно, чтобы один рабочий взял в руки рулетку и встал там, где нужно посадить первое дерево. Второй рабочий, взяв в руки конец рулетки, должен отойти на расстояние, равное желаемому расстоянию между деревьями (например, 5 м) и отмотать ленту длиной в два раза больше чем требуется (если деревья планируется посадить на расстоянии 5 м друг от друга, рабочий должен отмотать 10 м ленты рулетки). Третий рабочий должен взяться за середину ленты рулетки и отойти в сторону, натягивая ленту. Когда лента рулетки натянется полностью, третий рабочий окажется точно в том месте, где нужно посадить третье дерево».
Здесь равносторонний треугольник понимается как частный случай равнобедренного. Именно на этом примере можно оценить справедливость фразы: теоретическое решение практической задачи обычно является не лучшим практическим решением. Вот и в этом случае решение, предложенное профессиональным математиком, на практике не применяется. С математической точки зрения, напротив, практика не имеет значения. Не имеет значения и то, что в практическом решении равносторонний треугольник понимается иначе — для математика это не новость.
Тем не менее практически решил эту задачу не математик, а садовод. И практическое решение математической задачи — это результат математического творчества.
Задача лесничего: треть того, что мы видим, — вовсе не треть того, на что мы смотримПри обрезке деревьев обычно удаляются ветви нижней его трети, и лесничему нужно на глаз определить эту часть дерева. Является ли треть того, что мы видим, третьей частью того, на что мы смотрим? Как правило, это не так:
Визуальное и реальное деление предмета на три части совпадают, только когда мы рассматриваем дугу окружности, находясь в ее центре. Как же лесничий решит задачу? Как визуально определить треть предмета, на который он смотрит?
Чаще всего точная высота дерева нам неизвестна. Если А1 — угол зрения, под которым можно увидеть все дерево, а — уровень глаз, d — расстояние до основания дерева, то угол А3 определяющий нижнюю треть дерева, вычисляется по формуле:
В чем заключается суть вопроса? В том, что видимая величина угла меняется в зависимости от точки, из которой мы смотрим на него. Видимая середина отрезка будет соответствовать его истинной середине только в том случае, если мы будем находиться на серединном перпендикуляре к этому отрезку:
При делении отрезка на три части подобная ситуация невозможна. Если бы она была возможна, то существовала бы точка X плоскости, такая, что при взгляде из нее трети Р1Р2, Р2Р3 и P3P4 отрезка Р1Р4 были бы видны под одним и тем же углом (см. рисунок ниже). Следовательно, так как из точки X можно было бы увидеть под одним и тем же углом две половины P1P3 точка X должна была бы располагаться на серединном перпендикуляре к отрезку P1P3 (то есть на прямой, проходящей через Р2 и перпендикулярной P1P3). Это же было бы справедливо для серединного перпендикуляра к отрезку Р2Р4 (прямой, проходящей через Р3 и перпендикулярной Р2Р4). Таким образом, точка X должна была бы располагаться одновременно на двух серединных перпендикулярах, которые параллельны между собой, так как они перпендикулярны одному и тому же отрезку P1P4, что невозможно:
За исключением случая, когда мы смотрим на дугу окружности, находясь в ее центре, треть того, что мы видим, — вовсе не треть того, на что мы смотрим.
Предупреждение для бухгалтера: округленная сумма значений не равна сумме округленных значенийОкругление чисел выполняется по следующим правилам: если последний знак десятичной записи числа меньше 5, этот знак заменяется на 0, если же последний знак больше 5, то предыдущий знак увеличивается на единицу:
2,34 ~= 2,3;
2,37 ~= 2,4.
Ошибки округления в одну десятую, сотую или тысячную при работе с большими числами могут быть значительными. Если ошибка в одну сотую евро повторится на 300 миллионах счетов, общее расхождение составит 3 миллиона евро. В бухгалтерском учете подобное недопустимо. При составлении балансов даже сотые доли евро могут повлиять на итоговое значение округленной величины:
Имеем теорему:
Округленная сумма значений не равна сумме округленных значений.
Это утверждение можно подтвердить с помощью следующих таблиц:
Обратите внимание, с какой частотой в таблицах фигурируют числа 0, 1 и 2:
Почему мы не можем определить операцию округления так, чтобы 0, 1 и 2 распределялись более равномерно? Например, так, чтобы каждое из этих чисел фигурировало в таблице примерно в 33,3 % случаев. Эта ситуация представлена ниже: 0, 1 и 2 в таблице встречаются 33, 34 и 33 раза соответственно:
Жалоба
Напишите нам, и мы в срочном порядке примем меры.