Карлос Мадрид - Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление Страница 15

Тут можно читать бесплатно Карлос Мадрид - Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление. Жанр: Научные и научно-популярные книги / Математика, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Карлос Мадрид - Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление читать онлайн бесплатно

Карлос Мадрид - Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление - читать книгу онлайн бесплатно, автор Карлос Мадрид

3) Адамар и Смэйл обнаружили, что символическая динамика — один из самых заметных признаков хаоса. И соленоид, и подкова Смэйла, и аттрактор Лоренца обладают символической динамикой. Если мы рассмотрим десятичные дроби в двоичной системе счисления, то сможем описать каждую траекторию аттрактора Лоренца последовательностью нулей и единиц.

К примеру, траектория 0,11000101… сначала совершит два витка вокруг правой части аттрактора (так как после запятой записаны две единицы), затем — три витка вокруг его левой части (так как за двумя единицами следуют три нуля подряд) и так далее. Применив эту символическую динамику, можно доказать существование хаоса в системе Лоренца: каждая траектория будет беспорядочно вращаться вокруг правой или левой части аттрактора.

* * *

Рассмотрим теперь логистическое отображение Мэя, которое задается следующим уравнением в конечных разностях:

хn+1 = kхn (1 — хn).

Иными словами, для данного начального условия х на интервале между 0 и 1 орбита х рассчитывается путем последовательного вычисления значений функции f(х) = kx (1 — х), где k — параметр, больший 1, но меньший 4. Поведение логистической системы, названной так потому, что она используется для моделирования динамики численности определенных популяций, удивительным образом зависит от значения k. Если k меньше некоторого критического значения, которое, по оценкам, составляет 3,569945…, то траектории будут иметь правильную форму. При превышении этого критического значения траектории будут стремиться к хаосу. Эта дискретная динамическая система четко показывает, что простые математические действия могут обладать неожиданно сложными свойствами.

Функция f(х) является функцией второй степени:

f(х) = kx (1 — х) = kxkx2.

Иными словами, f(х) — нелинейная функция, и именно эта нелинейность делает возможным хаотическое поведение: в силу нелинейности небольшие отклонения начальных условий могут приводить к значительным изменениям.

Изучим динамику логистического отображения для значений k, меньших критического, к примеру для k = 2. Примем в качестве начального условия x0  = 0,8 и определим его орбиту с помощью калькулятора:

x1 = f(х0) = 2 х0(1 — х0) = 2∙0,8∙(1 — 0,8) = 2∙0,8∙0,2 = 0,32

х2 = f(х1) = 2х1(1 — х1) = 2∙0,32∙(1 — 0,32) = 2∙0,32∙0,68 = 0,4352

х3 = f(х2) = 2х2(1 — х2) = 2∙0,4352∙(1 — 0,4352) = 2∙0,4352∙0,5648 = 0,49160192.

Теперь, когда мы знаем, как рассчитываются первые члены орбиты, вычислим

следующие члены напрямую:

х4 = 0,4998589…

х5 = 0,4999998…

х6 = 0,4999999…

Обратите внимание на полученные значения. Что вы видите? Они последовательно приближаются к 0,5. Рассматриваемая траектория четко приближается к пределу — точечному аттрактору, расположенному в точке 0,5. Ради любопытства вычислим орбиту точки 0,5: так как f (0,5) = 2∙0,5∙(1 — 0,5) = 22424∙0,5∙0,5 = = 0,5, орбита этой точки будет стационарной (значения функции всегда будут равны 0,5). Следовательно, орбита точки 0,8 сходится к точке равновесия.

Рассмотрим, как наша траектория сходится к этой фиксированной точке, геометрически. Используем компьютерную программу, чтобы показать, как изменяются значения орбиты (представленные на вертикальной оси) с ростом числа итераций (откладываются на горизонтальной оси).

Нетрудно видеть, что значения орбиты очень быстро стабилизируются в окрестности точки 0,5, что мы уже вычислили при помощи калькулятора.

Далее будем изображать орбиту точки на так называемой диаграмме-паутине.

Построив график f(х) = 2х (1 — х) (он будет представлять собой параболу, так как f(х) — функция второй степени), рассмотрим начальное условие x0 = 0,8. Далее определим орбиту этой точки графически. Проведем вертикальную линию через точку с абсциссой x0 = 0,8 до пересечения с параболой — графиком функции f(x).

Затем из точки пересечения этой линии с параболой проведем горизонтальную линию до пересечения с диагональю у = х. Полученная абсцисса (координата на горизонтальной оси) будет указывать положение точки пересечения построенной линии с диагональю и будет соответствовать х1 Далее будем смещаться вертикально (вверх или вниз), пока вновь не пересечем график f(х). Повторив описанные выше действия, получим ломаную линию. Абсциссами ее вертикальных отрезков будут x0, х1х2х3. Эта ломаная линия укажет, куда будет стремиться орбита x0.

На этом графике можно видеть, как «паутина» точки x0 = 0,8 сходится к фиксированной точке, в которой пересекаются парабола — график функции f(х) — и прямая — график функции у = х. Как и следовало ожидать, этой фиксированной точкой будет точка 0,5.

Повторим описанные выше действия для другого значения параметра k. Примем его равным не 2, а 3,1. Орбита начальной точки x0 = 0,8 будет выглядеть так.

При значениях k, больших 3, происходит нечто удивительное: хотя движение по-прежнему будет оставаться правильным, орбита точки 0,8 уже не будет стремиться к какой-то одной точке. Вместо этого она будет колебаться между значениями 0,56 и 0,76. Точечный аттрактор 0,5 словно бы разделился на две точки с координатами 0,56 и 0,76. По сути, это пример орбиты с периодом, равным 2, так называемого 2-цикла, так как мы видим два точечных аттрактора. Новая паутина, которая будет порождать уже не точку, а квадрат, выглядит так.

Продолжим увеличивать значения k и рассмотрим = 3,5. Орбита x0 = 0,8 будет выглядеть так.

Теперь орбита будет колебаться между четырьмя точками. Их координаты приблизительно равны 0,39, 0,51, 0,82 и 0,86. Это уже 4-цикл, так как одни и те же значения будут повторяться каждые четыре шага. Кажется, что с увеличением k периоды будут удваиваться: 1, 2, 4. Сначала мы наблюдали единственный точечный аттрактор, затем — два, теперь — четыре. Логично предположить, что далее их число будет равняться восьми, шестнадцати, тридцати двум и так далее. Наблюдаемая динамика уже не столь проста, однако ее по-прежнему можно назвать более или менее регулярной.

Позднее мы рассмотрим это необычное удвоение периода еще раз, а пока ограничимся тем, что изобразим новую паутину, образованную двумя основными квадратами.

И наконец, осмелимся превысить критическое значение 3,569945. Рассмотрим k = 3,9. Ситуация радикально изменится. Орбита x0 = 0,8 будет выглядеть так.

Орбита стала хаотической! В ней больше не наблюдается никаких закономерностей. Она даже не является квазипериодической, а «прыгает» с одного места на другое и кажется случайной. А что, если мы рассмотрим k = 4?

То же самое хаотическое поведение! Диаграмма-паутина будет хаотической, а представленные на ней значения будут беспорядочно колебаться между 0 и 1.

Однако орбита и диаграмма-паутина точки х0 = 0,8 — не исключение: все остальные возможные орбиты и диаграммы будут выглядеть точно так же. И вновь мы наблюдаем эффект карточной колоды.

На этом сюрпризы не заканчиваются: два различных начальных условия, близких друг к другу, определяют орбиты, которые по прошествии определенного времени будут выглядеть совершенно по-разному. Примем = 4. Если мы хотим изучить орбиту точки а = 0,900 и по ошибке введем значение Ь = 0,901 (например, при измерении мы допустили ошибку, равную одной тысячной), то увидим, что орбиты а и b вскоре будут значительно отличаться, хотя изначально они были близки друг к другу. Орбита точки а будет образована значениями {0,900; 0,360; 0,9216; 0,2890; 0,8219; 0,5854; 0,9708…}, орбита точки b — значениями {0,901; 0,3568; 0,9180; 0,3012; 0,8419; 0,5324; 0,9958…}. Иными словами, исходная разница в одну тысячную через несколько итераций будет иметь порядок нескольких сотых. Всего за семь итераций разница увеличится в 20 раз! По прошествии определенного времени реальная и прогнозная траектории уже не будут иметь ничего общего.

И вновь мы наблюдаем эффект бабочки.

Подведем итог: изменяя значения параметра k в логистическом отображении от = 2 до k = 4, мы показали, как система постепенно приближается к хаотическому состоянию. А где же операции растяжения и складывания, которые порождают хаос? Прямо у нас перед глазами. Логистическая функция f(х) = kx(1 — х) «растягивает» числовой интервал между 0 и 1 вследствие умножения х на k. Затем этот интервал «складывается пополам» в результате умножения kx на (1 — х) — число, меньшее единицы. Таким образом, числовой интервал растягивается и складывается, подобно подкове.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.