Яков Перельман - Для юных математиков. Веселые задачи Страница 25

Тут можно читать бесплатно Яков Перельман - Для юных математиков. Веселые задачи. Жанр: Научные и научно-популярные книги / Математика, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Яков Перельман - Для юных математиков. Веселые задачи читать онлайн бесплатно

Яков Перельман - Для юных математиков. Веселые задачи - читать книгу онлайн бесплатно, автор Яков Перельман

Плывя по течению, пароход делает 1 версту в 3 минуты; плывя против течения – 1 версту в 4 минуты. На каждой версте пароход в первом случае выгадывает 1 минуту. А так как на всем расстоянии он выгадывает во времени 5 часов, или 300 минут, то, следовательно, от Энска до Иксограда 300 верст.

Действительно:

300/15 – 300/20 = 20 – 15 = 5.

Решение задачи № 86

Если, для удобства обозначения, перенумеровать яйца, то у нас будут

крутое № 1 …………… к1

крутое № 2 …………… к2

всмятку № 1 …………… с1

всмятку № 2 …………… с2

всмятку № 3 …………… с3

Из этих яиц можно составить следующие 10 пар:

к1 к2

к1 с1

к1 с2

к1 с3

к2 с1

к2 с2

к2 с3

с1 с2

с1 с3

с2 с3

Мы видим, что только одна пара – именно первая – состоит из крутых яиц, остальные 9 не дают требуемого сочетания. Значит, у вас только 1 шанс из 10 взять пару крутых яиц; в остальных 9-ти случаях из 10-ти вы проигрываете. И если вы ставите 1 рубль, то ваш партнер, имеющий 9 шансов выиграть, должен, для уравнения шансов, поставить не 5, а 9 рублей. Решение задачи № 87

При 4-х метаниях число всех возможных положений игральной кости равно 6x6x6x6 = 1296. Допустим, что первое метание уже состоялось, причем выпало единичное очко. Тогда при трех следующих метаниях число всех возможных положений, благоприятных для Петра (т. е. выпадений любых очков, кроме единичного) = 5x5x5 = 125. Точно также возможно по 125 благоприятных для Петра расположений, если единичное очко выпадет только при втором, только при третьем или только при четвертом метании. Итак, существует 125+125+125+125 = 500 различных возможностей для того, чтобы единичное очко при 4-х метаниях появилось один и только один раз. Неблагоприятных же возможностей существует 1296-500 = 796 (так как неблагоприятны все остальные случаи).

Мы видим, что у Владимира шансов выиграть больше (796 против 500), чем у Петра.

Решение задачи № 88

Нетрудно сообразить, что все семь друзей могли встречаться только через такое число дней, которое делится и на 2, и на 3, и на 4, и на 5, и на 6, и на 7. Наименьшее из таких чисел есть 420.

Следовательно друзья сходились все вместе только один раз в 420 дней (14 месяцев).

Решение задачи № 89

Каждый из восьми присутствующих (хозяин и 7 друзей) чокается с 7 остальными; всего, значит, сочетаний по два насчитывается 8x8 = 56. Но при этом каждая пара считалась дважды (например, 3-й гость с 5-м и 5-й с 3-м считались за разные пары). Следовательно, стаканы звучали

56/2 = 28 раз.

Решение задачи № 90 Если площадь воловьей шкуры 4 квадр. метра или 4000000 кв. миллиметров, а ширина ремня 1 миллиметр, то общая длина вырезанного ремня (вероятно, Дидона вырезала его из шкуры спирально) – 4000000 миллиметров, то есть 4000 метров, или 4 километра. Таким ремнем можно окружить квадратный участок площадью в 1 кв. километр (около 90 десятин).

Глава Х Обманы зрения

ЗАДАЧА № 91

Две дуги

На этом рисунке изображены две дуги, которые сопровождаются короткими штрихами. Какая дуга сильнее изогнута: верхняя или нижняя?

Рис. 63. Что кривее?

Рис. 64. Что длиннее?

ЗАДАЧА № 92 Три полоски

Какая из трех бумажных полосок, изображенных на чертеже 64-м, самая длинная?

ЗАДАЧА № 93 Два корабля

Перед вами (черт. 65) два корабля: пароход и парусник. У которого из них палуба длиннее?

Рис. 65. Равны ли палубы?

ЗАДАЧА № 94 Где середина?

Школьника спросили, где середина высоты начерченного здесь треугольника. Школьник показал место, обозначенное на фигуре черточкой. По его мнению, эта точка и есть середина. Поправьте его на глаз и затем проверьте его и себя бумажкой.

Рис. 66. Где середина?

ЗАДАЧА № 95 Два прямоугольника

Школьник начертил два прямоугольника, пересеченные прямой линией, и утверждал, что эти прямоугольники равны. Почему он думал, что они равны?

Рис. 67. Одинаковы ли эти прямоугольники?

ЗАДАЧА № 96 Шляпа иностранца

Я показывал своим знакомым картинку, представленную здесь на черт. 68-м, и они утверждали, что прямоугольник, описанный около шляпы этого иностранца, имеет форму квадрата. В чем их ошибка?

Рис. 68. Квадрат ли?

ЗАДАЧА № 97 Продолжить линию

Если продолжить прямую линию ab черт. 69-го, то куда она упрется: выше точки с или ниже?

Рис. 69. Куда упрется линия?

ЗАДАЧА № 98 Что длиннее?

Какая из линий ab , cd или ef  на черт. 70-м самая длинная?

Рис. 70. Сравните ab , cd и ef .

ЗАДАЧА № 99 Поместится ли?

Поместится ли в промежутке между АВ и CD (черт. 71) изображенный здесь кружок?

Рис. 71. Поместится ли кружок между АВ и CD?

ЗАДАЧА № 100 Два кружка

На черт. 72-м вы видите два заштрихованных кружка, которые кажутся одинаковых размеров. Но после того, как вы изощрили свой глазомер предыдущими упражнениями, вы, конечно, не попадете впросак. Вам нетрудно поэтому будет ответить на вопрос: какой кружок больше?

Рис. 72. Какой кружок больше?

ОТВЕТЫ НА ЗАДАЧИ №№ 91-100

№ 91. Обе дуги одинаковы.

№ 92. Все полоски одинаковой длины.

№ 93. Палубы у обоих кораблей изображены одинаковой длины.

№ 94. Середина указана правильно.

№ 95. Потому что они действительно равны.

№ 96. Ошибки нет: фигура вокруг шляпы – квадрат.

№ 97. Прямая упрется в точку с.

№ 98. Все три линии одинаковой длины.

№ 99. Кружок не помещается.

№ 100 (задача-ловушка). Кружки равны.

Приложение «ТАНГРАММЫ»

Примечания

1

Для знакомых со школьной арифметикой предназначается другая книга того же автора: «Загадки и диковинки в мире чисел». Петроград. 1923 г.

2

Тиражи: 1-го издания 1916 г. – 4000 экз., 2-го – 40000 экз. В этих изданиях книжечка была выпущена под заглавием «Веселые задачи».

3

На некоторых дорогах рельсы 6-метровые. Выйдя из вагона на станции, вы можете, измеряя рельсы шагами, узнать их длину; каждые 8 шагов можно принять за 5 метров.

4

Кузьмы Пруткова.

5

Точнее, не перегнать, а отстать от Земли, т. е. двигаться по ее поверхности в сторону, обратную ее движению, так быстро, чтобы продлить для себя продолжительность суток.

6

Человек может обогнать землю и пешком – в 50-ти километрах от полюса.

7

Отсюда ясно, между прочим, что часто встречающееся в учебниках определение поверхности, как «границы тела» – несостоятельно; поверхность Мебиуса никакого тела ограничивать не может, а между тем она – поверхность.

8

Вы можете отрезать страницы Приложения по пунктирной линии, наклеить их на плотные листы бумаги, вырезать фигурки и составить из них различные силуэты.

9

Первое издание разошлось в 4000 экз., второе (1919 г.) – в 15000 экз., третье (1920 г.) – в 25000 экз.

10

Для знакомых с школьным курсом арифметики мною составлен другой сборник математических упражнений: «Загадки и диковинки в мире чисел» (Лгр., 1923, изд. 2-е).

11

Водоизмещение корабля равно наибольшему грузу, какое он может поднять (включая и вес самого судна). Тонна – около 62,5 пудов.

12

Я не сообщил этой цифры в условии задачи потому, что самая величина потери – 8-я, или 10-я, или 20-я часть – для решения задачи не имеет значения.

13

Их удобнее всего наклеивать на четыре стороны квадратного бруска.

14

Столько горошин помещается в куб. сантиметре при рыхлом сложении; при более же плотной укладке, когда одна горошина частью помещается в промежутке между соседними, горошин должно поместиться больше.

15

Впрочем, полвека тому назад такая работа была выполнена одним учителем чистописания в Англии: он аккуратно расставил в толстой тетради миллион точек, по тысяче на каждой странице.

16

Эта задача заимствована из обширного старинного русского учебника математики Ефима Войтяховского, конца XVIII века.


Конец ознакомительного фрагмента

Купить полную версию книги
Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.