Иэн Стюарт - Истина и красота. Всемирная история симметрии. Страница 3

Тут можно читать бесплатно Иэн Стюарт - Истина и красота. Всемирная история симметрии.. Жанр: Научные и научно-популярные книги / Математика, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Иэн Стюарт - Истина и красота. Всемирная история симметрии. читать онлайн бесплатно

Иэн Стюарт - Истина и красота. Всемирная история симметрии. - читать книгу онлайн бесплатно, автор Иэн Стюарт

Гамеш, сильными сторонами которого были упорство и хорошая память, засмеялся: «Нет, это легко. Там не надо думать».

«Именно поэтому мне и скучно, — сказал его друг. — А вот математика — это…»

«Это ужас, — вступил в разговор Хумбаба, только что пришедший в Дом Табличек, как всегда, с опозданием. — Я хочу сказать, Набу, что мне с этим делать?» Он указал на свою глиняную табличку с домашним заданием: «Умножаем число само на себя и прибавляем это число, удвоенное. Получаем 24. Каково число?»

«Четыре», — ответил Набу. «Правда?» — спросил Гамеш. А Хумбаба сказал: «Сам знаю. Но как это получить?»

Набу скрупулезно растолковал приятелю процедуру, которую их учитель математики объяснял им на прошлой неделе: «Прибавь половину от 2 к 24, получишь 25. Извлеки квадратный корень, который равен 5…»

Сбитый столку Гамеш замахал руками: «Я никак не могу разобраться, что за штука эти квадратные корни, Набу».

«А! — сказал Набу. — Теперь понятно!» Оба его приятеля глядели на него как на сумасшедшего. «Твоя проблема не в решении уравнений, Гамеш. А в квадратных корнях!»

«И в том и в другом», — пробормотал Гамеш.

«Но сначала идут квадратные корни. Надо учить предмет шаг за шагом, как все время нам повторяет Отец-учитель в Доме Табличек».

«А еще он повторяет, чтобы мы не пачкали одежду, — запротестовал Хумбаба, — но мы же не обращаем на это внимания…»

«Это другое дело. Это…»

«Без толку! — завопил Гамеш. — Я никогда не стану писцом, и отец задаст мне такую трепку, что я не смогу сидеть, а мать будет, как всегда, жалобно смотреть на меня и говорить, чтобы я больше трудился и думал о семье. Но мне математика в голову не лезет! Вот законы я могу запомнить. Это весело! Смотри: „Если жена господина убьет своего мужа из-за другого мужчины, ее следует прямо на месте посадить на кол“. Вот это по мне. А всякие глупости типа квадратных корней — нет! — он остановился, чтобы глотнуть воздуха, и замахал руками, не в силах сдержать себя. — Уравнения, числа — нам-то что за дело?»

«От них есть польза, — возразил Хумбаба. — Помнишь все эти штуки про закон насчет отрезания ушей рабам?»

«Да, — сказал Гамеш, — наказание за нападение».

«Если выбьешь простолюдину глаз, — подсказал Хумбаба, — то ты должен заплатить ему…»

«Одну серебряную мину», — сказал Гамеш.

«А если сломаешь рабу кость?»

«Заплатишь его хозяину компенсацию в половину цены раба».

Хумбаба захлопнул ловушку: «Вот, а если раб стоит шестьдесят шекелей, то тебе надо знать, сколько будет половина от шестидесяти. Если хочешь стать законником, тебе нужна математика!»

«Ответ — тридцать», — немедленно выпалил Гамеш.

«Видишь! — закричал Набу. — Ты соображаешь в математике!»

«Ясное дело, для такого математика вовсе не требуется, — будущий юрист ударил ладонью по воздуху, пытаясь выразить глубину своих чувств. — Если дело касается реального мира, Набу, то да, я соображаю в математике. Но не тогда, когда речь идет о выдуманных задачках про квадратные корни».

«Квадратные корни нужны, чтобы измерять землю», — вставил Хумбаба.

«Да, но я учусь не для того, чтобы быть сборщиком налогов: мой отец хочет, чтобы я стал писцом, как и он сам, — заметил Гамеш. — Так что не понимаю, зачем мне учить всю эту математику».

«Затем, что она полезна», — повторил Хумбаба.

«Не думаю, что дело только в этом, — тихо сказал Набу. — По-моему, вся суть в истине и красоте — в том, чтобы получить ответ и знать, что он правильный». Но выражение лиц его друзей подсказывало, что убедить их не удалось.

«Для меня — это получить ответ и знать, что он неправильный», — вздохнул Гамеш.

«Математика важна, потому что это истина и красота, — настаивал Набу. — Квадратные корни — это основа для решения уравнений. Они, может быть, и не всюду используются, но это неважно. Они важны сами по себе».

Гамеш собрался уже добавить что-то малоуместное, но тут заметил, как в класс входит учитель. Пришлось скрыть свои слова притворным приступом кашля.

«Доброе утро, мальчики», — приветливо сказал учитель.

«Доброе утро, учитель».

«Покажите мне ваше домашнее задание».

Гамеш вздохнул. Хумбаба выглядел озабоченным. На лице Набу ничего не читалось. Так было лучше.

Возможно, самое удивительное в подслушанном разговоре — если забыть, что это чистейшей воды вымысел — состоит в том, что он происходил около 1100 года до Р.Х. в легендарном Вавилоне.

То есть, я хотел сказать, мог происходить. У нас нет исторических свидетельств о трех мальчиках по именам Набу, Гамеш и Хумбаба, не говоря уж о записи их разговора. Но человеческая природа тысячелетиями не менялась, так что фактологическая подоплека моей истории о трех школьниках прочна как скала.

Нам на удивление много известно о культуре жителей Вавилона из-за того, что свои записи они делали на влажной глине своеобразным клинообразным шрифтом — так называемой клинописью. Когда глина затвердевала под вавилонским солнцем, эти надписи становились практически неуничтожимыми. А если в здании, где хранились глиняные таблички, случался пожар, что, конечно, бывало, то жар превращал глину в керамику, которая могла сохраняться еще дольше.

И наконец, одеяло из песка пустыни помогало сохранять записи сколь угодно долго. Таким образом Вавилон и стал тем местом, с которого начинается письменная история. Там же берет свое начало и история понимания человечеством симметрии — и ее воплощения в систематическую и количественную теорию, «исчисление» симметрии, ни в чем не уступающее по своей мощи дифференциальному и интегральному исчислению, созданному Исааком Ньютоном и Готфридом Вильгельмом Лейбницем. Без сомнения, его истоки можно было бы проследить еще дальше вглубь веков, если бы у нас нашлась машина времени или хотя бы еще немного больше древних глиняных табличек. Но, как нам сообщает письменная история, именно вавилонские математики направили человечество на путь познания симметрии, что в свою очередь радикально повлияло на наше восприятие физического мира.

Математика основывается на числах, но не ограничивается ими. Вавилоняне использовали эффективные обозначения, которые в отличие от нашей десятичной системы (основанной на степенях числа десять), были шестидесятиричными (основанными на степенях числа шестьдесят). Вавилоняне были осведомлены о прямоугольных треугольниках и знали нечто вроде того, что мы сейчас называем теоремой Пифагора, — хотя в отличие от их греческих последователей математики Вавилона, по-видимому, не заботились о подкреплении своих эмпирических открытий логическими доказательствами. Они использовали математику для высших целей — для астрономии, для сельскохозяйственных и религиозных нужд, а также для вполне прозаических задач торговли и сбора налогов. Такая двойственная роль математического знания — выявление порядка в окружающем мире и содействие делам человеческим — неразрывной золотой нитью проходит через всю историю математики.

Самое важное из достижений вавилонских математиков — это начало понимания того, как решать уравнения.

Уравнения — это способ, которым математики находят значение некоторой неизвестной величины, исходя из косвенных данных. «Вот список известных фактов о неизвестном числе; найдите это число». Уравнение, тем самым, есть нечто вроде головоломки, в фокусе которой — число. Нам не говорят, что это за число, а сообщают про него какие-то полезные сведения. Наша задача в том, чтобы решить головоломку, то есть найти неизвестное число. Подобное занятие может показаться несколько отдаленным от геометрической концепции симметрии, но в математике идеи, открытые в одном контексте, как правило, проливают свет и на целый ряд других контекстов. Именно наличие внутренних взаимосвязей придает математике такую интеллектуальную мощь. И именно поэтому числовая система, изобретенная для обслуживания торговых сделок, смогла заодно сообщить древним нечто полезное о движении планет и даже о так называемых неподвижных звездах.

Головоломка может оказаться легкой. «Удвоенное число равно шестидесяти; каково искомое число?» Не надо быть гением, чтобы понять, что неизвестное равно тридцати. Или немного посложнее: «Я умножил некое число на себя и прибавил 25; в результате получилось удесятеренное мое число. Каково оно?» Пробы и ошибки могут привести вас к ответу 5, но пробы и ошибки — это неэффективный метод решения головоломок или уравнений. Что, если в условии заменить 25, скажем, на 23? Или на 26? Вавилонские математики смотрели на метод проб и ошибок свысока, ибо владели секретом намного более глубоким и мощным. Им было известно правило — некоторая стандартная процедура — для решения таких уравнений. Судя по всему, они были первыми людьми, осознавшими, что такие методы существуют.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.