Жемчужина Эйлера - Дэвид С. Ричесон Страница 32

Тут можно читать бесплатно Жемчужина Эйлера - Дэвид С. Ричесон. Жанр: Научные и научно-популярные книги / Математика. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Жемчужина Эйлера - Дэвид С. Ричесон читать онлайн бесплатно

Жемчужина Эйлера - Дэвид С. Ричесон - читать книгу онлайн бесплатно, автор Дэвид С. Ричесон

такой же, как для исходного графа.

Впоследствии доказательство Коши было подвергнуто критике. Как Эйлер попал впросак, не дав четких инструкций по порядку удаления пирамид, так и Коши не привел надежных указаний, в каком порядке отрезать треугольники. Если действовать неаккуратно, то можно, следуя алгоритму Коши, получить несвязный граф, для которого доказываемое соотношение не выполняется. Например, на рис. 12.5 мы удаляли треугольники в неправильном порядке и в результате получили несвязный граф, не удовлетворяющий формуле Эйлера (V = 10, E = 14, F = 6). Тем не менее всегда возможно, воспользовавшись методом Коши, упростить граф, не сталкиваясь с такой ситуацией.

Рис. 12.5. Метод Коши может приводить к вырожденным многоугольникам

Как мы уже отмечали, Коши поставил рекорд по доказательству теорем, не осознавая их важности и не доводя до логического завершения. Яркий пример — его доказательство формулы Эйлера. В своей статье он явно утверждает, что его доказательство применимо к выпуклым многогранникам. Это правда, но на самом деле оно применимо к гораздо более общему классу многогранников. Ключевой шаг доказательства Коши — удаление грани и перенос оставшейся части многогранника на плоскость удаленной грани, так чтобы никакие грани не пересекались. Это можно сделать для любого выпуклого многогранника, но также и для многих других.

Например, доказательство Коши проходит без каких-либо изменений для невыпуклого многогранника на рис. 12.6. Чтобы убедиться в этом, просто расположим камеру Лакатоса рядом с нижней гранью куба.

Рис. 12.6. Куб с вырезанным уголком и его граф

Лакатос и математик Эрнст Штайниц (1871–1928) считают, что Коши знал, что его доказательство применимо к некоторым, а быть может, и ко всем невыпуклым многогранникам. Недоразумение проистекает из небрежного употребления Коши слова «выпуклый». Оно отсутствует в формулировке теоремы, но в доказательстве он говорит о «выпуклой поверхности многогранника». Он так никогда и не развеял это недоразумение, поэтому невозможно сказать, что он знал и чего не знал.

Независимо от того, понимал ли Коши, что его результат можно распространить и на некоторые невыпуклые многогранники, другие это быстро заметили. В 1813 году, в тот же год, когда была опубликована статья Коши, Жергонн дал свое доказательство формулы Эйлера. Впоследствии он писал: «И все же кто-то может предпочесть — и не без причины — красивое доказательство г-на Коши, обладающее тем драгоценным преимуществом, что в нем не предполагается выпуклость многогранника»100.

При некотором воображении доказательство Коши можно применить и к еще более широкому классу многогранников. В современных вариантах этого доказательства многогранник предполагается сделанным из резины. Если после удаления грани оставшуюся часть многогранника можно растянуть на плоскости без перекрытий и складывания, то доказательство Коши применимо. В главе 15 мы увидим патологические примеры многогранников, не обладающих этим свойством — после удаления грани остаток нельзя разложить на плоскости. Оказывается, что ключевым свойством является то, что многогранник имеет «форму сферы». Мы подробно обсудим это кажущееся расплывчатым свойство в главе 16. Коши был буквально в шаге от осознания этого важнейшего свойства. Если бы он обратил на него внимание, то сделал бы важный вклад в только зарождавшуюся дисциплину — топологию, или analysis situs, как ее тогда называли. Как писал Жак Адамар (1865–1963) в 1907 году:

Я считаю одним из самых удивительных событий в истории науки ошибку, которую допустил Коши, полагавший, что доказал теорему Эйлера, но не сделавший никаких предположений о природе изучаемого многогранника. От его внимания ускользнул принцип огромной важности, открытие которого он оставил Риману: фундаментальная роль analysis situs в математике101.

Коши недооценил весь потенциал своего доказательства не только для многогранников, но и для графов. Например, Артур Кэли (1821–1895) в 1861 году заметил, что доказательство Коши применимо также к графам с криволинейными ребрами (этот факт был независимо отмечен Листингом в 1861 году и Камилем Жорданом [1838–1922] в 1866 году)102. В формулировке своей теоремы Коши предполагал, что граф — это совокупность многоугольников внутри многоугольной области. В следующей главе мы увидим, что о графах можно высказывать гораздо более общие утверждения, но для этого нужно сначала ввести современную терминологию.

Приложения к главе

94. Abel (1881), 259.

95. Freudenthal (1971).

96. Там же.

97. Simmons (1992), 186.

98. Cauchy (1813a).

99. Lhuilier (1813).

100. Там же.

101. Hadamard (1907).

102. Listing (1861-62); Jordan (1866b).

Глава 13

Планарные графы, математические планшеты и брюссельская капуста

В большинстве наук одно поколение разрушает созданное предыдущим и отменяет установленное ранее. Только в математике каждое поколение добавляет новый этаж к прежней конструкции.

— Герман Ганкель103

В предыдущей главе мы видели, какую остроумную технику применил Коши для доказательства формулы Эйлера. Он взял многогранник, удалил одну грань и спроецировал все, что осталось, на плоскость этой грани. Затем он доказал, что для получившегося многоугольника имеет место формула V — E + F = 1, а значит, для исходного многогранника — формула V — E + F = 2. Связь с теорией графов бросается в глаза. На первый взгляд кажется, что было бы тривиально обобщить формулу Эйлера на графы, которые не являются проекциями многогранников и имеют криволинейные ребра.

Но трудность обобщения формулы Эйлера состоит в том, что это проходит не для всех графов. Подсчитать вершины и ребра просто — это те элементы, из которых граф и состоит, но вот граней у графа может и не быть. Даже в том случае, когда граф нарисован на бумаге, ребра необязательно разбивают область на грани. Например, ребро PR в левом графе на рис. 13.1 пересекает ребро QS, поэтому не может быть границей никакой грани. Однако этот граф можно нарисовать по-другому (как в правой части), так что пересечений не будет, и тогда область разбивается на грани. Граф, который можно нарисовать, так что ребра не пересекаются, называется планарным.

В многограннике грань — это область, ограниченная многоугольником. Для графов определение не такое строгое. Грань может быть ограничена одним ребром, как петля из P в P на рис. 13.1. Или двумя ребрами, как в случае пары ребер, соединяющих вершины Q и R. (Два ребра между одной и той же парой вершин называются параллельными.) Возможно даже, что ребро заходит внутрь грани, как ребро между S и T.

Рис. 13.1. Два представления одного и того же графа

Многие специалисты

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.