Алексей Лосев - Хаос и структура Страница 48

Тут можно читать бесплатно Алексей Лосев - Хаос и структура. Жанр: Научные и научно-популярные книги / Математика, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Алексей Лосев - Хаос и структура читать онлайн бесплатно

Алексей Лосев - Хаос и структура - читать книгу онлайн бесплатно, автор Алексей Лосев

В дальнейшем Цермело берет две или несколько таких «γ–частей» (в этом случае одна из них, конечно, будет отрезком другой) и берет любые вообще элементы данного множества, входящие в «γ–части» (их порядок, очевидно, будет тот же, что и порядок соответствующих «γ–частей», а множество, обнимающее все «γ–части» и все входящие в них элементы, будет, конечно, вполне упорядоченным множеством). Остается только приравнять данное множество этому множеству всех «γ–частей», и — теорема доказана. Приравнивается же оно опять по тому же принципу. Пусть в Μ входят какие–нибудь части, которые не суть «γ–части». Тогда остается дополнительное множество до А/, в котором также будет найден «отмеченный» элемент, т. е. получится новая «γ–часть», которая охватит и полученное множество «γ–частей» с этим «отмеченным» элементом, и таким образом все данное множество окажется состоящим из «γ–частей», т. е. вполне упорядоченным множеством.

Всего этого можно бы и не упоминать. Тут важно то, что мы уже сказали: в неразличимом берется одна точка, с которой сравнивается вся остальная неразличимость и, следовательно, всякая другая точка этой неразличимости. Больше ничего и нет в доказательстве Цермело. Такой характер доказательства с полной очевидностью удостоверяет, что множество, если его мыслить как твердое и законченное понятие, вообще не может обойтись без идеи порядка и что это является одной из самых основных аксиом теории множеств.

Можно сказать еще и так. Множество немыслимо без своих элементов (нуль–множество не есть исключение, так как нуль–множество и нуль просто — это совершенно разные вещи); множество и есть не что иное, как множество именно элементов. Но если это так, то элементы должны находиться между собой в каком–нибудь отношении. Ведь «множество» — это только неудачный термин; тут надо было бы говорить именно о единстве, а не о множестве. Единство же есть единство чего–нибудь. В том, что математики называют множеством, с философской точки зрения содержится именно единство взаимоотношений элементов. Раз есть элементы, то в силу самого своего понятия они находятся в некоем определенном взаимоотношении, а это и значит, что они вполне упорядочены. Понятие полной упорядоченности уже содержится в понятии элемента (т. е., другими словами, в самом понятии множества), так же как понятие протяженности содержится в понятии пространства.

3. Хотя подробная диалектика упорядоченного множества будет нами изложена в специальном отделе о множествах, необходимо и сейчас ради уяснения уже занятых позиций наметить перспективу по вопросу об упорядоченности и показать, какие вообще возможны виды упорядочения с диалектической точки зрения.

Итак, мы различаем чистое арифметическое число (в котором инобытийно–нулевая упорядоченность) и голую идею порядка — категорию подвижного покоя, — которая, конечно, может рассматриваться и сама по себе, без всякого применения к числу или к чему бы то ни было. Разные виды (или, если угодно, ступени) упорядочения возникнут в зависимости от того, как мы будем трактовать взаимоотношение голого инобытийно–нулевого числа и голого порядка (точнее, голой идеи порядка). В зависимости от того, как близко и как глубоко число и порядок проникли друг в друга, от этого будут меняться и виды упорядоченности. Тут та же последовательность диалектических категорий, что и везде.

1) Прежде всего, порядок есть перво–принцип. Это значит, порядок есть некая неразличимость актов полагания вообще. Все акты полагания слиты в одно, но не просто в один акт (актов тут именно много, бесконечно много, и они все друг от друга отличны), а в одну общую смысловую неразличимость. Акты полагания порядка различны, но смысловой результат этих актов — полная неразличимость. Отсюда получается конструкция, в одно и то же время неразличимая — по смысловой взаимослитости всех актов полагания порядка и различная — по самим этим актам. Это есть упорядоченность континуума. Континуум есть, конечно, как и всякое множество, вполне упорядоченное множество. Тут идея порядка присутствует актом своего полагания, своей субстанцией, так сказать, и этих актов множество, они рассыпаны в полную необозримость, но не своим смысловым содержанием.

2) Далее, идея порядка начинает более глубоко и осмысленно внедряться в инобытийно–нулевое число. Именно, она внедряется в противоположность первому случаю вполне смысловым образом, избегая, однако, своего субстанциального воплощения. Там воплощалась субстанция порядка без его смысловой структуры; тут же воплощается смысловая структура без ее субстанции. Там мы имеем упорядоченность, в которой было дано очень много актов полагания, но ввиду отсутствия принципа структурности порядка все эти акты полагания в смысловом отношении оказались слитыми в одну общую неразличимость; здесь же воплощается сама структурность порядка, т. е. зависящая от него как от принципа фигур–ность, но ввиду отсутствия субстанциальности и как бы овеществленности порядка вся эта фигурность остается чисто идеальной, абстрактной, она не принимается в расчет как таковая, а только продолжается такой же «субстанциальный» и континуальный учет этой фигурности, что и раньше. Тут мы — в области топологии.

Это уже не просто континуум, ничем не заполненный, но фигурность, рассматриваемая топологически. Топология занимается, как известно, изучением свойств фигур в отвлечении от конкретной формы с единственным условием— непрерывности деформации. Фигура не должна разрываться, во всем же остальном она может быть деформирована как угодно. Это значит, что в топологическом рассмотрении фигурность дана не целиком, но только абстрактно, как понятие, и воплощается она на континуальном фоне так, что важным оказывается не самая структура фигуры, а только те моменты, которые входят в определение отвлеченного понятия данной фигуры. Это так в геометрической топологии, в analysis situs[30]; это так и в теоретико–множественной топологии. Здесь множество тоже упорядочено так, что еще не дается порядка во всей его конкретной и законченной структурности. Вместе с чистой континуалогией топология рассматривает упорядоченность множества только с точки зрения внешних актов полагания порядка, вне структуры самого порядка — хотя в отличие от чистого континуума топологическое множество уже воплощает на себе идею порядка, пока в самом абстрактном и только понятийном его смысле.

3) Обе установки—упорядоченность субстанциально–актуальная и упорядоченность абстрактно–смысловая — должны объединиться вместе так, чтобы множество оказалось упорядоченным и в том и в другом отношении. Другими словами, должны существовать множества, которые сохраняют свою фигурность и в своих преобразованиях не нарушают ни субстанциальной, ни смысловой упорядоченности. Как и везде в диалектике, здесь отвлеченная идея, соединяясь со своим инобытием, с алогическим (в отношении себя самой) материалом, порождает уже конкретный образ, в котором нельзя отделить идею от инобытия и инобытие от идеи. Здесь появляется чистая фигурность, в которую воплотилась идея порядка, и мы впервые можем увидеть ее стройные контуры. Однако если прослеживать этот ход идей в геометрии, то с этой фигурностью еще не получится обыкновенная элементарная геометрия. Это будет так называемая проективная геометрия, отличающаяся от обыкновенной тем, что ей не свойственна идея измерения, не свойственны метрические установки, представляющие собою уже дальнейшее диалектическое воплощение идей порядка. Аналогично с этим мы должны требовать категорию проективного множества в отвлечении от всякой идеи размерности.

Одна и та же диалектическая конструкция этого тройного вида упорядоченности — континуальной, топологической и проективной—может быть выражена и зафиксирована разно. Во–первых, мы уже указали одну категориальную схему: континуум может трактоваться как перво–принцип, и тогда топологическая множественность будет определена через положенность чистого и абстрактного порядка, а проективное множество будет положенностью и воплощенностью порядка как структурно выработанного порядка. Можно сказать, во–вторых, и иначе: континуум и топологическая структура есть воплощенность из идеи порядка его категории самотождественного различия (можно привести, например, Энриквеса, который прямо говорит, что учение о континууме и вообще топология вырастают на аксиомах сочетания (взаимопринадлежности), что соответствует, как мы видели, нашей категории самотождественного различия); проективное же множество есть воплощенность вместе и самотождественного различия, и подвижного покоя (по Энриквесу, это будет «сфера действия аксиом сочетания» и «аксиом порядка»). Можно диалектически понять то же самое еще и так: континуум — неоформленный и внутри не расчлененный тезис; топологическое множество — антитезис, ибо присоединение фигурности пока только абстрактно — как структурно безразличный акт полагания. Проективное множество—синтез, воплощенность в числовой сфере чистой и законченной, конкретной структуры (т. е. фигурности). Мы уже знаем, что диалектически возможны самые разнообразные конструкции одного и того же смыслового обстояния; и поэтому настаивать на какой–нибудь одной из предложенных конструкций нет никаких оснований. Тут важна только нарастающая смысловая сложность упорядочения: континуум, топос и проективное множество.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.