Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда Страница 7
Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда читать онлайн бесплатно
Глава XI: Мозг и мысль. Тема этой главы — «Как физическая аппаратура мозга может порождать мысли?» Сначала описываются крупномасштабные и мелкомасштабные структуры мозга. Затем выдвигается несколько гипотез об отношении понятий к нейронной деятельности.
Англо-франко-немецко-русская сюита. Интерлюдия, состоящая из трех переводов знаменитого стихотворения «Jabberwocky» Льюиса Кэрролла.
Глава XII: Разум и мысль. Предыдущие стихотворения естественно подводят к вопросу: «Могут ли языки — или даже сам разум разноязычных людей — быть „отображены“ один на другой?» Как вообще возможна коммуникация между мозгами двух разных людей? Что между ними общего? Может ли мозг, в некоем объективном смысле, быть понят другим мозгом? Для возможного ответа используется географическая аналогия.
Ария с различными вариациями. Форма этого Диалога основана на «Гольдберг-вариациях» Баха, а его содержание имеет отношение к теоретико-численным задачам, подобным Гипотезе Гольдбаха. Основная цель этого гибрида — показать, как гибкость теории чисел опирается на тот факт, что поиски в бесконечном пространстве имеют множество вариантов. Некоторые из них оказываются бесконечными, некоторые — конечными, а другие находятся где-то посередке.
Глава XIII: Блуп, Флуп и Глуп. Это названия трех компьютерных языков. Программы Блупа могут осуществлять только предсказуемо конечный поиск, в то время как программы Флупа способны на непредсказуемый или даже бесконечный поиск. В этой главе я стараюсь объяснить понятие примитивно рекурсивных и общерекурсивных функций в теории чисел, поскольку они очень важны для доказательства Теоремы Гёделя.
Ария в ключе G. В этом Диалоге словесно отражена автореферентная конструкция Гёделя. Эта идея принадлежит У. Я. О. Квайну. Диалог служит прототипом следующей главы.
Глава XIV: О формально неразрешимых суждениях ТТЧ и родственных систем. Название этой главы — адаптация заглавия статьи Гёделя 1931 года, где впервые появилась его теорема о неполноте. Тщательно рассматриваются две основные части доказательства. Показано, как из предположения о непротиворечивости ТТЧ вытекает то, что она (или любая похожая система) неполна. Обсуждаются отношения ТТЧ к эвклидовой и неэвклидовой геометрии, и значение теоремы Гёделя для философии математики.
Праздничная кантатата… В которой Ахилл не может убедить скептически настроенную Черепаху в том, что сегодня его день рождения. Его повторные неудачные попытки предвосхищают повторяемость Гёделева аргумента.
Глава XV: Прыжок из системы. Обсуждается повторяемость Гёделева аргумента, из чего вытекает, что ТТЧ не только неполна, но и в принципе непополнима. Анализируется и опровергается интересный аргумент Лукаса, использующего Теорему Гёделя для доказательства того, что человеческая мысль не может быть механизирована.
Благочестивые размышления курильщика табака. В этом Диалоге затрагиваются многие темы, относящиеся к автореферентности и самовоспроизводству. Среди примеров — телевизионные камеры, снимающие сами себя, а также вирусы (и другие подклеточные существа), способные на самосборку. Название Диалога происходит из стихотворения самого Баха, которое цитируется в тексте.
Глава XVI: Авто-реф и Авто-реп. В этой главе обсуждается связь между разными типами автореференции и самовоспроизводящимися объектами (такими, как компьютерные программы или молекулы ДНК). Объясняются отношения между самовоспроизводящимся объектом и внешними механизмами, помогающими этому воспроизводству; особое внимание уделяется отсутствию между ними четкой границы. Тема этой главы — передача информации между различными уровнями подобных систем.
Магнификраб в пирожоре. Это название — игра слов; имеется в виду Баховский «Magnificat в ре-мажоре». Речь идет о Крабе, который, по-видимости, обладает магической способностью различать между истиннными и ложными высказываниями теории чисел. Читая их как музыкальные пьесы, он проигрывает их на флейте и определяет, «красивы» ли они.
Глава XVII: Чёрч, Тюринг, Тарский и другие. Фантастический Краб предыдущего Диалога заменен здесь несколькими реальными людьми с удивительными математическими способностями. Тезис Чёрча-Тюринга, связывающий мозговую деятельность с вычислениями, представлен в нескольких версиях. Все они анализируются с точки зрения их последствий для возможности механического подражания мышлению и программирования на компьютере умения чувствовать и создавать прекрасное. Тема связи мозговой деятельности с вычислениями приводит к таким вопросам как Тюрингова Проблема Остановки или Теорема Истинности Тарского.
ШРДЛУ. Этот Диалог основан на статье Т. Винограда о его программе ШРДЛУ; я изменил только несколько имен. В Диалоге некая компьютерная программа, на довольно впечатляющем языке, беседует с человеком о так называемом «мире кубиков». Кажется, что программа на самом деле понимает тот ограниченный мир, о котором говорит.
Глава XVIII: Искусственный интеллект: краткий обзор. Эта глава начинается с обсуждения знаменитого «теста Тюринга» — предложенного пионером компьютеров Аланом Тюрингом способа определить, «думает» ли машина. Далее мы переходим к краткому обзору истории искусственного интеллекта. Обсуждаются программы, до какой-то степени умеющие играть в различные игры, доказывать теоремы, решать задачи, сочинять музыку, заниматься математикой и пользоваться естественным языком (английским).
Контрафактус. О том, как мы организуем наши мысли, воображая гипотетические варианты реальности. Это умение приобретает иногда странные формы, — как например, в характере Ленивца, этого страстного любителя блинчиков и ненавистника воображаемых ситуаций.
Глава XIX: Искусственный интеллект: виды на будущее. Предыдущий Диалог затрагивает вопрос о том, как информация представлена на различных уровнях контекста. Это приводит к современной идее «фреймов». Для конкретности дан пример того, как зрительные головоломки решаются «методом фреймов». Затем обсуждается важный вопрос взаимодействия понятий вообще, что приводит к разговору о творческих способностях. В заключение дан список моих собственных предположительных «Вопросов и Ответов» на тему ИИ и разума в общем.
Канон Ленивца. Этот Диалог имитирует Баховский канон, в котором один голос повторяет ту же мелодию, что и другой, только «вверх ногами» и вдвое медленнее. Третий голос свободен. Ленивец произносит те же реплики, как и Черепаха, при этом отрицая (с свободном смысле слова) все, что она говорит, и говоря вдвое медленнее. Свободный голос — Ахилл.
Глава XX: Странные Петли или Запутанные Иерархии. Грандиозный водоворот множества идей о иерархических системах и автореферентности. Речь идет о странной «путанице», возникающей, когда система начинает действовать сама на себя, — например, наука, изучающая науку, правительство, исследующее правительственные преступления, искусство, нарушающее законы искусства и, наконец, люди, размышляющие о собственном мозге и разуме. Имеет ли Теорема Гёделя какое-нибудь отношение к этой последней «путанице»? Связаны ли с этой Теоремой свободная воля и самосознание? В заключение Гёдель, Эшер и Бах снова связываются в одно целое.
Шестиголосный ричеркар. Этот Диалог — игра, изобилующая многими идеями, которыми проникнута эта книга. Он является повторением истории «Музыкального приношения», с которой начинается книга. В то же время это «перевод» в слова самой сложной части «Музыкального приношения» — «Шестиголосного ричеркара». Подобная двойственность наделяет «Ричеркар» таким количеством уровней значения, какого нет ни в каком другом Диалоге книги. Фридрих Великий заменен здесь Крабом, фортепиано — компьютерами и так далее. Читателя ожидает множество сюрпризов. В Диалоге снова затрагиваются проблемы разума, сознания, свободной воли, искусственного интеллекта, теста Тюринга и так далее. Он заканчивается косвенной ссылкой на начало книги, таким образом превращая ее в гигантскую автороферентную Петлю, одновременно символизирующую музыку Баха, рисунки Эшера и Теорему Гёделя.
Список иллюстраций
Суперобложка. Триплеты «ГЭБ» и «ЭГБ», подвешенные в пространстве, отбрасывают символические тени на три плоскости, встречающиеся в углу комнаты. (Триплетом я называю блок, сделанный таким образом, что его тени, отброшенные под прямым углом, являются тремя разными буквами. Эта идея родилась у меня внезапно, когда как-то вечером я ломал голову над тем, как лучше символизировать единство Геделя, Эшера и Баха, слив их имена неожиданным образом. Два триплета, показанные на суперобложке, сделаны мной самим. Я выпилил их из красного дерева ручной пилой, используя для отверстий торцевую фрезу; стороны каждого триплета около 10 см длиной.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.