Виктор Зуев - Многоликий вирус. Тайны скрытых инфекций Страница 14
Виктор Зуев - Многоликий вирус. Тайны скрытых инфекций читать онлайн бесплатно
Американские ученые извлекли из трупов 23 людей, погибших от разнообразных причин, узлы тройничных нервов, измельчили их на кусочки размерами до одного кубического миллиметра и поместили в матрасы, в которых уже была выращена однослойная культура клеток почки зеленой африканской мартышки. Клетки мартышки были выбраны не случайно – они высокочувствительны как раз к вирусу герпеса, и ученые надеялись на быстрое накопление в них вируса, даже если в узлах нервов его будет очень мало. (Надо отметить, что, конечно же, исследователи отбирали узлы тройничного нерва трупов только тех людей, у которых перед гибелью не было никаких проявлений активной герпетической инфекции). Матрасы с кусочками ткани узлов на клетках наблюдали день за днем, и вот спустя три недели в двух матрасах появились признаки разрушения и гибели обезьяньих клеток. Что послужило этому причиной? Для получения ответа питательную среду, на которой развивались такие культуры, внесли в культуру свежих клеток почки зеленой африканской мартышки – и уже через 24 часа могли наблюдать гибель этих клеток, а в электронный микроскоп были прекрасно видны типичные частицы вируса герпеса. Так из узлов тройничного нерва 56-летнего мужчины и 54-летней женщины был выделен инфекционный вирус герпеса. Латентная герпетическая инфекция человека была доказана! (рис. 6).
Рис. 6. Частицы вируса герпеса во внутриклеточной вакуоли. Электронная микрофотография, увеличение в 200 000 раз
Приведенный пример демонстрирует большие трудности выделения персистирующих вирусов, для чего нередко требуются комбинации существующих, а то и разработка новых лабораторных методов (в случае изменения свойств вирусов, поддерживающих латентную форму инфекционного процесса).
Теперь рассмотрим проблемы латентных вирусных инфекций с третьей стороны. Мы уже знаем, что в латентно инфицированном организме в ответ на персистенцию вируса начинается выработка специфических антител. Но еще в 30-х годах прошлого столетия ученые наблюдали факты отсутствия корреляции между степенью устойчивости организмов к вирусным заболеваниям и уровнем таких антител в крови. Например, имели место случаи смерти от оспы при наличии в крови больных людей высоких концентраций противооспенных антител. Напомню читателям, что антитела, образующиеся в организме в ответ на появление возбудителя, представляют собой особые белки – гамма-глобулины. Существует болезнь, которая выражается в нарушении образования в человеческом организме именно этих белков. В организме таких больных в ответ на введение любого инфекционного агента образуется очень мало (гипогамма-глобулинемия) или не образуется вовсе (агамма-глобулинемия) специфических антител.
Так вот, оказалось, что дети, страдающие такими дефектами (нарушением образования в организме гамма-глобулинов), наиболее часто и при этом очень тяжело болеют бактериальными, а не вирусными болезнями. Почему? Ответить на этот вопрос помогла вакцинация таких детей. Оказалось, что в результате введения противовирусных вакцин дети приобретали высокую устойчивость к соответствующему вирусу в отсутствие противовирусных антител в крови!
Однако довольно парадоксов! Латентная инфекция организма или клеточных культур сопровождается приобретением невосприимчивости к повторному заражению вирусом, который данную латентную инфекцию сформировал и поддерживает. Помните широко известное выражение: «Добро и зло никогда не приходят одни»? Оно полностью применимо и к латентным вирусным инфекциям, которые не только таят в себе опасность рассеивания вируса в окружающей среде и возникновения вспышек заболевания, не только трудны для распознавания и диагностики, но, оказывается, и полезны для самого организма-вирусоносителя, оберегая его от развития заболевания при заражении тем же вирусом.
Таким образом, противовирусный иммунитет напрямую связан с персистенцией вирусов. И не случайно наиболее эффективные вирусные вакцины – это живые вакцины, т. е. препараты живых вирусов, лишенных болезнетворных свойств или со значительно сниженными болезнетворными свойствами. После прививки такие слабопатогенные вирусы способны размножаться и длительное время сохраняться (персистировать) в организме. При заражении подобного организма даже большими дозами того же высокопатогенного вируса (по сути – при повторном заражении) болезнь не развивается, т. е. организм становится высокоустойчивым к заражению.
Как мы видели, противовирусный иммунитет не всегда связан (или мало связан) с выработкой антител. Тогда с чем же? Ответ на этот вопрос дают разнообразные опыты в клеточных культурах (как часто они приходят к нам на помощь!). Ведь в подобных культурах нет тех клеток, которые вырабатывают антитела, а между тем если сформировать в культуре клеток латентную инфекцию, то такие клетки уже не удается разрушить заражением даже очень высокими дозами того же самого, а иногда и близкородственных вирусов. В 1957 году англичане А. Айзекс и Д. Линденман приоткрыли завесу над этой иммунологической загадкой. Исследуя репродукцию вируса гриппа в клеточной культуре, ученые обнаружили накопление в клетках особого белка, обладающего выраженной противовирусной активностью. Так был открыт хорошо нам знакомый интерферон, о котором мы обычно вспоминаем в периоды сезонных эпидемических вспышек гриппа и острых респираторных заболеваний.
Вскоре было выяснено, что в организме клетками вырабатываются три разновидности интерферона.
Интерферон альфа (ИФ-α) синтезируют лейкоциты, он обладает выраженным противовирусным и противоопухолевым действием. Интерферон бета (ИФ-β) продуцируют клетки соединительной ткани – фибробласты, он имеет выраженную противоопухолевую и некоторую противовирусную активность. Интерферон гамма (ИФ-γ) вырабатывают некоторые виды Т-клеток (Т-хелперы и С08+Т-лимфоциты), он обладает выраженной иммуномодулирующей (ослабляющей или усиливающей иммунитет) и слабой противовирусной активностями.
Примечательно, что в отличие от механизмов иммунной защиты, направленных против чужеродных белков (антитела), интерфероны «запрещают» работать в организме чужеродным нуклеиновым кислотам, проникающим главным образом в составе вирусов и других микроорганизмов, кроме того, они предотвращают повреждения собственного генетического аппарата клетки хозяина.
А вот еще один интересный пример, но не из лабораторной практики, а из жизни. По собственному опыту мы знаем, что перенесенная корь оставляет после себя пожизненный иммунитет. Так что же, вирус кори уже не покидает наш организм после перенесенного заболевания? Да, именно так! И доказательство этому было впервые получено в 1965 году, когда из лимфатических узлов и селезенки внешне здоровых взрослых людей, в детстве перенесших корь, был выделен коревой вирус.
В одном из последующих разделов этой книги будет рассказано о различных путях формирования латентных вирусных инфекций, здесь же лишь отмечу следующее: чем дольше поддерживается в организме латентная вирусная инфекция, тем дольше сохраняется иммунитет к данному вирусу.
И механизм предупреждающего действия вакцин обусловлен именно недопущением в клетки болезнетворных вирусных частиц – место уже занято вакцинным вирусом. В таких случаях принято говорить о нестерильном иммунитете. Но, к сожалению, ни одна из известных на сегодняшний день даже живых вирусных вакцин (против бешенства, оспы, гриппа, паротита, кори, желтой лихорадки, полиомиелита, клещевого энцефалита и других заболеваний) не создает иммунитета более прочного, чем само перенесенное заболевание. Это свидетельствует о меньшей продолжительности латентной инфекции, сформированной после прививки, по сравнению с той латентной инфекцией, которая формируется после перенесенного заболевания.
Итак, вырисовывается любопытная картина: латентная вирусная инфекция обеспечивает защиту от болезнетворной способности своего же вируса, не позволяя ему вызывать развитие заболевания. Следовательно, латентная вирусная инфекция выгодна макроорганизму. А самому вирусу? Извлекает ли он из этого какую-либо пользу? Огромную! Судите сами: если бы вирусы вызывали только смертельные заболевания, то они «рубили бы сук, на котором сидят». И вирусы ведут себя иначе.
Среди всех известных вирусов человека и животных самую многочисленную группу составляют те из них, которые переносятся членистоногими – комарами, москитами, клещами. Из общего числа известных на сегодняшний день вирусов человека и животных (1950) членистоногими переносится более 400 видов! У них даже есть специальное название – арбовирусы. Основными «хранителями» различных арбовирусов в природе могут быть ящерицы, змеи, ежи, кроты, полевки, мыши, белки, зайцы, еноты, лисицы, овцы, козы и даже олени. Понятно, что особую роль в сохранении арбовирусов играют те животные, в организме которых инфекция протекает в латентной форме.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.