Rafael Lahoz-Beltra - Размышления о думающих машинах. Тьюринг. Компьютерное исчисление Страница 18

Тут можно читать бесплатно Rafael Lahoz-Beltra - Размышления о думающих машинах. Тьюринг. Компьютерное исчисление. Жанр: Научные и научно-популярные книги / Научпоп, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Rafael Lahoz-Beltra - Размышления о думающих машинах. Тьюринг. Компьютерное исчисление читать онлайн бесплатно

Rafael Lahoz-Beltra - Размышления о думающих машинах. Тьюринг. Компьютерное исчисление - читать книгу онлайн бесплатно, автор Rafael Lahoz-Beltra

Напротив, если ВХОД 1 находился в неактивном состоянии, величина на ВЫХОДЕ была равна обратной величине на ВХОДЕ 2, то есть 1, когда на ВХОДЕ 2 было 0 и наоборот.

ВХОД 1 ВХОД 2 выход 0 0 1 0 1 0 1 0 1 1 1 0

Если мы сравним модель искусственного нейрона Тьюринга с моделью Маккалока — Питтса, то увидим, что в последней величина на ВЫХОДЕ рассчитывается с заменой модификатора соединения на величину коэффициента w, который отражает синаптическую пластичность нейронов, то есть лучшую или худшую проходимость сигнала от одного нейрона к другому через синаптическую связь. Согласно формальной модели Маккалока — Питтса, нейрон ведет себя как калькулятор, способный вычислять сумму входных сигналов. Умножим каждый сигнал или ВХОД i на соответствующий коэффициент wi, сумму всех сигналов обозначим как ИТОГ:

ИТОГ = Σwi ВХОДi

После выполнения данной операции нейрон «решает», достаточна ли полученная информация ИТОГ для активации, или возбуждения. В самой элементарной модели нейрона величина ВЫХОДА получается с помощью ступенчатой функции:

1 ИТОГ ≥ U

ВЫХОД =

0 ИТОГ ≤ U

При этом величина порога U устанавливается предварительно. Обратим внимание, что эта величина показывает чувствительность нейрона к внешнему стимулу: нейрон более чувствителен, чем ближе к нулю величина ί, так как чем меньше порог, тем вероятнее, что ИТОГ превзойдет его величину при возбуждении нейрона. Если величина на ВЫХОДЕ равна нулю, нейрон останется в состоянии покоя, если на ВЫХОДЕ будет некоторая величина, нейрон перейдет в возбужденное состояние. При возбуждении нейрон отправляет ответ, величину 1, следующему нейрону, для которого это будет величина на ВХОДЕ. В других случаях величина 1 в комбинации с величинами на ВЫХОДЕ от других нейронов, например 1001, будет ответом нейронной сети на входящий сигнал.

ТЕСТ ТЬЮРИНГА

Тьюринг исследовал вопрос, как определить, разумно ли ведет себя машина (компьютер). Ученый очень изящно избежал необходимости дать определение разуму и принял следующую точку зрения: хотя машина не разумна в том смысле, в каком это относится к человеку, ее поведение может быть разумным.

Такая форма рассмотрения вопроса сегодня называется поведенческим подходом. Например, нам известно, что программы для игры в шахматы не являются разумными, но при игре они ведут себя так, будто они разумны. При этом Алан Тьюринг не дал определения разума и не ответил на вопрос, могут ли машины мыслить. На основе этих идей Тьюринг придумал испытание, известное как тест Тьюринга, состоящее в том, что машину, компьютер или программу, разумное поведение которой нужно оценить, подвергают следующей процедуре. Представим себе человека, у которого есть монитор и клавиатура. С их помощью он может задавать вопросы компьютеру, находящемуся в другой комнате. Ответ высвечивается на экране его монитора. Например, человек печатает на английском языке с помощью клавиатуры последнюю фразу, сказанную компьютером HAL-9000 в фильме «2001 год: Космическая одиссея»:

Daisy, Daisy у

give те your answer true.

Гт half crazy

over the love of you

It won’t be a stylish marriage

I can't afford a carnage...

Он запрашивает у компьютера перевод на русский и получает ответ:

Дейзи, Дейзи,

Дай мне свой правдивый ответ.

Я наполовину сошел с ума

от любви к тебе.

Это не будет стильная свадьба,

Я не могу позволить себе карету...

КАПЧА

Сегодня существует множество ситуаций, когда мы должны заполнять в интернете какие-либо поля, например при регистрации электронной почты, участии в опросах или регистрации на каком-либо сервисе. Однако в интернете присутствуют так называемые спамботы — программы, имитирующие поведение человека и также способные заполнять предложенные поля с противозаконными целями. Поэтому в 2000 году группа исследователей из Университета Карнеги-Меллона в сотрудничестве с Джоном Лангфордом из IBM разработали обратный тест Тьюринга для проверки, является собеседник машиной или человеком. Так появились КАПЧА — от английского САРТСНА (Completely Automatic Public Turing Test to tell Computers and Humans apart — полностью автоматизированный публичный тест Тьюринга для различения компьютеров и людей). В этом тесте пользователь должен ввести несколько знаков, изображение которых искажено (как на рисунке слева). Считается, что машина не сможет корректно считать информацию. Иногда символы могут быть зачеркнуты линией того же цвета (рисунок справа), чтобы программы искусственного интеллекта, например системы оптического распознавания символов (OCR), не смогли пройти тест, выдавая себя за людей.

Считается, что компьютер прошел тест Тьюринга, если человек не сможет определить, кто дал ему ответ: машина или другой человек. Показав текст на английском и его перевод нескольким людям, мы сможем определить, сколько процентов из них будут утверждать, что перевод сделан человеком, а сколько — скажут, что перевод сделал компьютер. Наверняка найдутся и те, кто не сможет определить, компьютером или человеком был сделан перевод. Если первые окажутся в меньшинстве, но при этом перевод все же был сделан компьютером (точнее программой), это будет означать, что компьютер прошел тест Тьюринга. Если компьютер или программа пройдут тест, можно будет резюмировать, что они ведут себя разумно. Если же они не пройдут тест, тогда мы не сможем прийти ни к какому заключению.

Успех теста Тьюринга заключается в том, что он многие годы оставался единственным испытанием ИИ, позволяющим установить, является ли машина разумной. Кроме того, эта проверка стала предвестником появления нового подхода к разработке ИИ — символьного (вспомним, что до этого применялись субсимвольный и поведенческий подходы). В этом направлении развития искусственного интеллекта ученые исследуют системы, обрабатывающие цепочки символов, например слова, как одно из проявлений человеческого разума.

ВЕЛИКАЯ ПАРТИЯ: ГАРРИ КАСПАРОВ ПРОТИВ АЛАНА ТЬЮРИНГА

Одна из наименее известных разработок Тьюринга — изучение возможности шахматной партии между разумной машиной и человеком. Эту возможность Тьюринг обсуждал со своим молодым коллегой из Блетчли-парка Джеком Гудом. Уже в то время в голове ученого брезжила идея о создании машины, которая могла бы учиться и обладала искусственным интеллектом. Эта возможность поддерживалась и тем, что все задачи и операции, которые «вычисляются» человеческим мозгом, вероятно, по силам машине Тьюринга.

Первый алгоритм для игры в шахматы был разработан Аланом Тьюрингом и Дональдом Мичи. Соответствующая программа появилась в 1950 году. К сожалению, в 1952 году Алик Гленни, автор Autocode — компилятора,разработанного для компьютера Manchester Mark I, выиграл у программы, написанной Тьюрингом.

Франц Морш, интегральная схема, разработанная специально для игры в шахматы.

Хотя эта программа, названная Turochamp, должна была выполняться компьютером, во время первых опытов она выполнялась «вручную», то есть сам Тьюринг карандашом на бумаге записывал ходы. В1953 году Тьюринг рассказал об этом эксперименте в статье «Шахматы» (Chess), ставшей дополнением к книге «Быстрее мысли» Бертрама В. Боудена. В честь столетия со дня рождения Алана Тьюринга, 26 июня 2012 года, 59 лет спустя после публикации статьи о Turochamp, на переносном компьютере была запущена программа Chessbase, и Гарри Каспаров выиграл у нее всего за 16 ходов. Ходы партии были следующими.

1. еЗ Nf6 5. Bd3 e4 9.0-0 Bg4 13. h4 Qh3 2. Nc3d5 6. Bxe4 dxe4 10. Qf4 Bd6 14. b3 Ng4 3. Nh3 е5 7. Nxe4 Be7 11. Qc4 Bxh3 15. Re1 Qxh2+ 4. Qf3 Nc6 8. Ng3 0-0 12. gxh3 Qd7 16. Kf1 Qxf2# 0-1

Современные шахматные программы делятся на две категории: одни используют метод полного перебора, рассматривая шахматные ходы как игровое дерево и применяя алгоритм Minimax; другие не полностью основаны на прямом переборе и используют искусственный интеллект.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.