Феликс Патури - Растения - гениальные инженеры природы Страница 24
Феликс Патури - Растения - гениальные инженеры природы читать онлайн бесплатно
Во-первых, конструкция в целом со многих точек зрения представляет собой великолепное техническое решение проблемы накопления, хранения и использовании воды. В результате перепада температур, обусловленного сменой дня и ночи, чередования яркого освещения и затенения на внутренних стенках листа-урны легко конденсируются нары воды, которую без труда поглощают проникающие сюда снаружи корни растения. Заметим, кстати, что водой-конденсатом, полученной за счет разницы температур, пользуются жители некоторых островов вулканического происхождения (например, Канарских). Крестьяне покрывают свои поля 20-сантиметровым слоем грубозернистого пемзового песка или вулканического пепла. При понижении температуры в ночное время в порах этих материалов скапливается конденсационная влага, усваиваемая затем сельскохозяйственными растениями. Без такого пористого покрытия было бы немыслимо ведение сельского хозяйства в районах, где осадки выпадают не чаще одного раза в три года.
Во-вторых, даже в засушливые периоды относительная влажность воздуха внутри урнообразного листа остается все еще настолько высокой, что корни растения не высыхают.
В-третьих, объем испаряемой этими листьями воды сводится до минимума, поскольку внутри них постоянно имеется влажный воздух и царит полный «штиль» — два обстоятельства, которые резко ограничивают интенсивность транспирации.
И наконец, в-четвертых, взамен израсходованной влаги может быть незамедлительно сконденсирована новая, которая опять же будет поглощена корневой системой. В целом это весьма напоминает механизм снабжения водой крупного промышленного центра, когда происходит многократное использование потребленной и регенерированной воды.
Но там, где человек осуществляет водоподготовку с помощью химии, дисхидия применяет дистилляцию, метод, не вызывающий практически никаких возражений с точки зрения физиологии. Более эффективного способа получения воды для ее повторной утилизации трудно придумать. Если воспользоваться терминологией из области охраны окружающей среды, то можно сказать, что в урнообразных листьях тропической лианы происходит настоящая рециркуляция водного ресурса (иными словами, повторное включение воды в существующий круговорот ее потребления).
Мы, люди, должны научиться тому, что в состоянии делать дисхидия, и как можно скорее, поскольку уровень загрязнения водной среды на нашей планете все возрастает.
В комплексе неотложных мер по предотвращению возможной катастрофы одна из наиболее важных — это организация производства по принципу рециркуляции природных ресурсов. Запасы питьевой воды у человечества столь же ограничены, как и у дисхидии с ее урнообразными листьями. Поэтому мы должны обходиться с водой столь же бережно и рационально. Приступать к регенерации воды нам следует не тогда, когда мы вновь ощутим потребность в ней, а уже в тот момент, когда мы производим промышленные и бытовые стоки. Заметим попутно, что растение никогда не выделяет загрязненной воды, в процессе испарения оно расстается с уже очищенной влагой. Итак, только практика возврата воды в круговорот ее потребления (рециркуляция) позволит обеспечить нас достаточным ее количеством.
В тех случаях, когда урнообразные листья дисхидии висят среди ветвей строго вертикально, отверстием вверх, они дополнительно играют роль цистерн и резервуаров для сбора воды и питательных веществ. В них скапливается дождевая вода, а также продукты разложения попавших внутрь и погибших там насекомых.
Если же учесть, что эти растения предпочитают более сухие и более открытые солнечному свету места обитания в отличие от эпифитных орхидей с их тканью, способной впитывать влагу воздуха, словно губка, то не трудно понять, почему дисхидии стремятся крайне экономно расходовать воду.
В климатически сходных условиях растут многие американские виды семейства бромелиевых. Они также предпочитают селиться в кронах высоких деревьев, где они полностью открыты горячим лучам тропического солнца и одновременно воздействию жарких ветров. Ввиду скудости дождевых осадков в этой местности бромелиевые вынуждены покрывать все свои потребности в воде за счет атмосферной влаги, содержащейся в воздухе, в первую очередь влаги, приносимой столь частыми здесь ночными туманами. Именно по этой причине она выработали совершенно иную, чем у орхидей и ластовневых, технологию получения воды. Одни из них вовсе отказались от корней, другие используют их лишь в качестве прикрепительных органов, которые нередко выдерживают на себе значительный по весу груз (фото 89).
Большинство же избрало самый прямой путь получения воды: непосредственно из воздуха в листья. Для этого, разумеется, необходимы специальные приспособления. И они есть. Это — микроскопические чешуйки, постоянно поглощающие воду из воздуха.
На фото 57 изображена эхмея (Aechmea chantinii), одно из комнатных растений семейства бромелиевых. Ее узкие, длинные и сочные листья украшены белыми поперечными полосками. Если рассматривать эти полоски в лупу, можно заметить, что они образованы множеством мельчайших круглых пластиночек, диаметр каждой из которых едва достигает одной четверти миллиметра (фото 58). И лишь под микроскопом становится видно, что пластинки на самом деле имеют форму крошечных воронок, серединой своей уходящих в глубь листа (фото 59). Их края свободно лежат на поверхности листа, не прирастая к нему, но при этом они многократно перекрывают друг друга. В свою очередь каждая из воронок состоит из отдельных клеток. Наиболее крупные из них, располагающиеся ближе к центру воронки, хорошо различимы на фотографии.
Фото 57. Эхмея (Aechmea chantinii) — одно из комнатных растений, принадлежащее к семейству бромелиевых. Узкие длинные листья растения украшены белыми поперечными полосками.
Фото 58. Если рассматривать белую полоску под лупой, то можно увидеть, что она образована множеством круглых белых пластинок (ширина изображения оригинала 11 миллиметров).
Фото 59. Лишь микроскоп позволяет выяснить истинную структуру белых полосок. Они состоят из многих сотен крошечных воронок, величина которых не превышает одной четверти миллиметра. В свою очередь каждая из воронок, состоит из мельчайших клеток, представляющих собой самые миниатюрные вакуумные насосы в мире.
Диаметр этих микросозданий природы составляет одну сотую миллиметра, и их с полным правом можно считать самыми маленькими в мире вакуумными насосами. Это пустотелые, сжимающиеся в сухую погоду клетки. При увлажнении их стенки быстро набухают и распрямляются; вся клетка вытягивается, и внутри нее образуется разрежение, проявляющее по отношению к внешней среде всасывающий эффект. Клетка жадно впитывает влагу из воздуха. Разница в концентрации клеточного сока в клетках воронки заставляет поглощенную воду передвигаться внутрь листа. Очень часто воронки располагаются на поверхности листа чрезвычайно плотно, и тогда растение способно вобрать в себя огромное количество влаги, приносимой туманом или росой. Сухая воронка может всосать целиком каплю воды.
Некоторые виды бромелиевых (например, тилландсия Tillandsia usneoides), свисающие, словно бороды великанов, с ветвей дерева-опоры, в сухом состоянии настолько легки, что можно предположить, что они не тонут в воде. На самом же деле стоит им оказаться на поверхности водоема, как их воронки начинают весьма быстро вбирать воду. Вес растения возрастает, и оно идет ко дну. В засушливых районах тропиков тилландсии, используя только воздух и воду, производят огромное количество растительного вещества, которое местные жители применяют в качестве упаковочного материала.
Совершенно иную систему утилизации атмосферной влаги выработали некоторые растения пустынь и полупустынь. Чтобы сделать описание этой системы более наглядным и понятным для читателя, я вначале вкратце расскажу о технологии лакокрасочного покрытия, которая активно используется в последние годы в промышленности. Речь идет о методе нанесения краски распылением в постоянном электростатическом поле высокого напряжения. Этот метод позволяет, применяя специально сконструированный для подобных целей пистолет-распылитель, покрывать краской или лаком изделия либо его детали буквально из-за угла. При этом полет мельчайших частичек краски происходит не по произвольной траектории, а таким образом, что все они подлетают к предмету, который необходимо покрасить, с нужной стороны: спереди, с боков и даже сзади. Это хорошо видно на фото 60. В рекламных текстах столь соблазнительные для пользования достоинства электростатического метода покрытия расхваливаются весьма назойливым образом, но тем не менее без излишнего преувеличения. В них, в частности, говорится о том, что частички краски летяг вдоль «силовых линий электрического поля». А это, в свою очередь, означает, что они, подобно маленьким магнитам, притягиваемым крупной металлической деталью, испытывают притяжение со стороны окрашиваемой поверхности. Поэтому они не пролетают мимо нее по прямой линии, как это происходит при наиболее распространенном способе нанесения краски распылением ее сжатым воздухом, а приобретают в пистолете-распылителе сильный электромагнитный заряд, который и направляет их к окрашиваемой детали. Попав на нее, частички краски теряют свой заряд.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.