Коллектив авторов - Популярная библиотека химических элементов. Книга первая. Водород — палладий Страница 4

Тут можно читать бесплатно Коллектив авторов - Популярная библиотека химических элементов. Книга первая. Водород — палладий. Жанр: Научные и научно-популярные книги / Научпоп, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Коллектив авторов - Популярная библиотека химических элементов. Книга первая. Водород — палладий читать онлайн бесплатно

Коллектив авторов - Популярная библиотека химических элементов. Книга первая. Водород — палладий - читать книгу онлайн бесплатно, автор Коллектив авторов

Но вот что любопытно. Самого Менделеева необычайно занимал вопрос: а почему периодическая система должна начинаться именно с водорода? Что мешает существованию элементов с атомным весом, меньше единицы? И в качестве такого элемента в 1905 г. Менделеев называет… «мировой эфир». Более того, он помещает его в нулевую группу над гелием и рассчитывает его атомный вес — 0,000001! Инертный газ со столь малым атомным весом должен быть, по мнению Менделеева, всепроникающим, а его упругие колебания могли бы объяснить световые явления…

Увы, этому предвидению великого ученого не было суждено сбыться. Но Менделеев был прав в том отношении, что элементы не построены из тождественных частиц: мы знаем теперь, что они построены из протонов, нейтронов и электронов.

Но позвольте, воскликнете вы, ведь протон — это ядро атома водорода. Значит Праут был все-таки прав?

Да, он действительно был по-своему прав. Но это была, если можно так выразиться, преждевременная правота, потому что в то время ее нельзя было ни по-настоящему подтвердить, ни по-настоящему опровергнуть…

Впрочем, сам водород сыграл в истории развития научной мысли еще немалую роль. В 1913 г. Нильс Бор сформулировал свои знаменитые постулаты, объяснившие на основе квантовой механики особенности строения атома и внутреннюю сущность закона периодичности. И теория Бора была признана потому, что рассчитанный на ее основе спектр водорода полностью совпал с наблюдаемым.

И все же история идеи, высказанной более 150 лет назад, еще не окончена. Одна из головоломнейших задач, стоящих перед сегодняшней наукой, заключается в том, чтобы найти закономерность в свойствах так называемых элементарных частиц, которых сейчас насчитывается уже много десятков. Ученые делают попытки свести их в своеобразную периодическую систему, но разве это не указывает на то, что все-таки существуют какие-то «кирпичи мироздания», из которых и построены все элементарные частицы, — и атомы, и молекулы, и мы с вами, в конце концов?

Физики предположили, что такие частицы существуют, и назвали их кварками. Правда, кварки оказались довольно своеобразными кирпичами мироздания: в свободном виде их получить нельзя. Почему — это уже другой разговор. Для нас сейчас важно, что мысль о частицах, из которых построено все, осталась такой же привлекательной, как и два тысячелетия, и полтора века назад.

Идея единства мира живет и развивается, и наступит время, когда она получит свое логическое завершение.

Водород и практика

Сразу же оговоримся: в отличие от «науки», как области чистых идей, «практикой» мы назовем все, что служит практической деятельности человека — пусть это даже будет деятельность ученого-экспериментатора.

Химик имеет дело с водородом прежде всего как с веществом, обладающим свойствами идеального восстановителя.

Но откуда взять водород? Конечно, проще всего из баллона. Из зеленого баллона с красной надписью «Водород» и с вентилем с «левой» резьбой (горючий газ!). Но если баллона под руками нет?

Водород можно получать взаимодействием металлов с кислотами:

Zn + H2SO4 → ZnSO4 + Н2↑.

Но этот водород не может быть идеально чистым, потому что нужны идеально чистые металл и кислота. Чистый водород получал еще Лавуазье, пропуская пары воды через раскаленный на жаровне ружейный ствол:

4Н2O + 3Fe — Fe3O4 + 4 Н2↑.

Но и этот способ не слишком удобен, хотя в современной лаборатории можно обойтись кварцевой трубкой, наполненной железными стружками и нагреваемой в электропечи.

Электролиз! Дистиллированная вода, в которую для повышения электропроводности добавлено немного серной кислоты, разлагается при прохождении постоянного тока:

2Н2O → 2Н2↑ + O2↑.

К вашим услугам — водород почти идеальной чистоты, его нужно только освободить от мельчайших капелек воды. (В промышленности в воду добавляют щелочь, а не кислоту — чтобы не разрушалась металлическая аппаратура.)

А теперь будем медленно пропускать этот водород через воду, в которой взмучен хлористый палладий. Почти сразу начнется восстановление, и осадок почернеет — получится палладиевая чернь

PdCl2 + H2 → Pd + 2HCl.

Палладиевая чернь — прекрасный катализатор для гидрирования разнообразных органических соединений. А катализатор тут нужен потому, что молекулярный водород весьма инертен: даже с кислородом при обычных условиях он реагирует необычайно медленно. Ведь сначала молекула водорода должна диссоциировать на атомы, а для этого на каждый моль водорода (т. е. всего на 2 г!) нужно затратить 104 ккал. А вот на поверхности катализатора этот процесс идет с гораздо меньшими затратами энергии, водород резко активизируется.

Пожалуй, не стоит много говорить о роли катализаторов в современной химической технологии: в их присутствии проводится подавляющее большинство процессов. И важнейший среди них — синтез аммиака из водорода и атмосферного азота:

3Н2 + N2 → 2NH3.

При этом водород добывают или из воды и метана по так называемой реакции конверсии

CH4 + 2Н2O → 4Н2 + CO2,

или расщепляя природные углеводороды по реакции, обратной реакции гидрирования:

CH3—CH3 → CH2=CH2 + H2.

Синтетический аммиак незаменим в производстве азотных удобрений. Но водород нужен не только для получения аммиака. Превращение жидких растительных жиров в твердые заменители животного масла, преобразование твердых низкокачественных углей в жидкое топливо и многие другие процессы происходят с участием элементного водорода. Выходит, что водород — это пища и для человека, и для растений, и для машин…

Но вернемся в лабораторию. Здесь водород применяют не только в чистом виде, но и в виде его соединений с металлами — например алюмогидрида лития LiAlH4, боргидрида натрия NaBH4. Эти соединения легко и специфически восстанавливают определенные группировки атомов в органических веществах:

Изотопы водорода — дейтерий (2H или D) и тритий (3H или Т) — позволяют изучать тончайшие механизмы химических и биохимических процессов. Эти изотопы используют как «метки», потому что атомы дейтерия и трития сохраняют все химические свойства обычного легкого изотопа — протия — и способны подменять его в органических соединениях. Но дейтерий можно отличить от протия по массе, а тритий — и по радиоактивности. Это позволяет проследить судьбу каждого фрагмента меченой молекулы.

Водород и будущее

Слова «дейтерий» и «тритий» напоминают нам о том, что сегодня человек располагает мощнейшим источником энергии, высвобождающейся при реакции

21H + 31H → 42He +10n + 17,6 Мэв.

Эта реакция начинается при 10 млн. градусов и протекает за ничтожные доли секунды при взрыве термоядерной бомбы, причем выделяется гигантское по масштабам Земли количество энергии.

Водородные бомбы иногда сравнивают с Солнцем. Однако мы уже видели, что на Солнце идут медленные и стабильные термоядерные процессы. Солнце дарует нам жизнь, а водородная бомба — сулит смерть…

Но когда-нибудь настанет время — и это время не за горами, — когда мерилом ценности станет не золото, а энергия. И тогда изотопы водорода спасут человечество от надвигающегося энергетического голода: в управляемых термоядерных процессах каждый литр природной воды будет давать столько же энергии, сколько ее дают сейчас 300 л бензина. И человечество будет с недоумением вспоминать, что было время, когда люди угрожали друг другу животворным источником тепла и света…

ПРОТИЙ, ДЕЙТЕРИЙ, ТРИТИЙ… Физические и химические свойства изотопов всех элементов, кроме водорода, практически одинаковы: ведь для атомов, ядра которых состоят из нескольких протонов и нейтронов, не так уж и важно — одним нейтроном меньше или одним нейтроном больше. А вот ядро атома водорода — это один-единственный протон, и если к нему присовокупить нейтрон, масса ядра возрастет почти вдвое, а если два нейтрона — втрое. Поэтому легкий водород (протий) кипит при минус 252,6°C, а температура кипения его изотопов отличается от этой величины на 3,2° (дейтерий) и 4,5° (тритий). Для изотопов это очень большое различие!

Удивительные изотопы распространены в природе неодинаково: один атом дейтерия приходится примерно на 7000, а один атом бета-радиоактивного трития — на миллиард миллиардов атомов протия. Искусственным путем получен еще один, крайне неустойчивый изотоп водорода — 4H.

ТОЧНОСТЬ — ПРЕЖДЕ ВСЕГО. Относительная масса легкого изотопа водорода определена прямо-таки с фантастической точностью: 1,007276470 (если принять массу изотопа углерода 12C равной 12,0000000). Если бы с такой точностью была измерена, к примеру, длина экватора, то ошибка не превысила бы 4 см!

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.