Владимир Ажажа - Дорогами подводных открытий Страница 8
Владимир Ажажа - Дорогами подводных открытий читать онлайн бесплатно
Большинство используемых сейчас для научных целей лодок имеет малую скорость, незначительную дальность плавания и рассчитано на умеренные глубины. С одной стороны, малая скорость — это достоинство. Именно медленное движение, граничащее с остановками, создает наилучшие условия для поиска объектов, их рассматривания, уменьшает влияние подлодки как источника механических колебаний на окружающую среду, экономит энергию аккумуляторной батареи и, следовательно, позволяет дольше оставаться под водой. Но, с другой стороны, при небольшой скорости лодка хуже управляется, она не может противостоять течению, быстро переходить из одной точки наблюдения в другую или перемещаться. Удерживать движущийся объект (например, буксируемый прибор или рыболовный трал) в поле видимости или слышимости для такой лодки — задача невыполнимая. А если нужно быстро измерить температуру или соленость вдоль какого-то направления, то есть, говоря иначе, выполнить температурный разрез? Или обследовать заданный район в минимальный срок? Идеальным было бы сочетание малой скорости (1–2 узла) с высокой (10–15 и более узлов), но как этого добиться? Высокая скорость, да еще поддерживаемая в течение длительного времени, требует мощного и крупного источника энергии, то есть громадных аккумуляторных батарей. Установка же громоздкой и тяжелой батареи потребует увеличения водоизмещения. Получается круг, из которого трудно вырваться: заданная скорость хода и дальность плавания лодки повлияют на водоизмещение еще при проектировании, а водоизмещение зависит, оказывается, и от глубины погружения. Схема здесь такая: чем глубже, тем прочнее и толще должен быть водонепроницаемый корпус, тем тяжелее лодка, но и тем больше ее объем, обеспечивающий необходимую плавучесть.
Сегодня экономическая подводная скорость (то есть скорость хода, при которой расход энергии на одну милю пути наименьший, а дальность плавания наибольшая) не превышает 2–4 узлов. А подводная дальность непрерывного плавания исчисляется в среднем несколькими десятками миль. Особняком стоят большие подлодки, такие, как «Северянка» или «Бен Франклин». Они способны проходить под водой сотни миль. Однако если малым ходом лодка может идти под водой десятки часов, то дать самый полный ход она может лишь на какой-то час. Но и этого достаточно, чтобы израсходовать энергоресурсы аккумуляторной батареи полностью. Зарядку аккумуляторов делают с помощью дизель-генератора обеспечивающей плавбазы или в порту. Большие лодки способны эту процедуру выполнять и самостоятельно своим дизелем. Тем же самым, который позволяет над водой плыть на десятки тысяч миль.
Около 30 процентов всех исследовательских лодок способно погружаться не глубже 30–50 метров, достичь 100-метрового рубежа могут 66 процентов лодок, в том числе и глубоководные, рассчитанные на километровые глубины; на 300 метрах могут работать 37 процентов лодок, на 600 — 23, на 1000 — 14, на 2000 — 6, на 6000 — 2 процента; на 11000 метров рассчитана одна подводная лодка — «Архимед», принадлежащая Франции. Установивший рекорд глубины «Триест-1» переделан в «Триест-2» с меньшей глубиной погружения. Любопытно, что лодки редко погружаются до предела своих возможностей. Американская «Дип Куэст» за два года лишь дважды побывала на рабочей глубине. По-видимому, достижение глубины — это не всегда главное. Зачем, скажем, подлодке, занятой изучением волнения моря с помощью направленного вверх эхолота, погружаться слишком глубоко? Даже в шторм достаточно погрузиться на несколько десятков метров и избавиться от мешающего влияния волнения. Главное — это выполнение научной программы.
Зрительное наблюдение на подводных лодках ведут через иллюминаторы или оптические трубы. Есть лодки с замкнутой телевизионной системой[7], иногда она заменяет иллюминаторы. Почти все лодки имеют наружные светильники для улучшения условий видимости и для обеспечения фото- или киносъемки.
Как известно, условия видимости под водой зависят от освещенности (естественной или искусственной) и прозрачности морской воды. На ее величину влияет количество взвесей, находящихся в море. Поэтому при удалении от берега обычно прозрачность морской воды увеличивается.
По сообщению Жака Пикара, гидронавты, совершавшие в 1969 году дрейф на лодке «Бен Франклин» в струе Гольфстрима, встретили водную массу, прозрачность которой была около 100 метров, то есть превышала традиционную «сверхпрозрачность» Саргассова моря, достигающую 66 метров.
Привыкший к темноте человеческий глаз может определить проникновение дневного света до глубины 800 метров. Его полное исчезновение, регистрируемое чувствительной фотопластинкой, происходит на глубинах, превышающих 1500 метров. И все равно, в морской воде нет такой прозрачности, как в космическом пространстве или хотя бы в атмосфере. Искусственный спутник с высоты 36 000 километров «видит» около 30 процентов поверхности нашей планеты, а с высоты, допустим, 200 километров площадь обзора уменьшается до 3 процентов; в поле зрения наблюдателя, находящегося на вершине Останкинской башни (534 метра), попадает 0,00002 процента поверхности Земли. А в поле зрения подводного наблюдателя попадает совсем уж ничтожный процент площади дна даже при редкой прозрачности 60 метров. При угле обзора направленного вниз иллюминатора 60 градусов и хорошей освещенности диаметр «высматриваемого» круга немногим превысит 50 метров. Это значит, что в отличие от привычных земных условий километр как мера длины под водой должен быть заменен метром.
Многие подлодки снабжены манипуляторами (механическими руками) для сбора образцов и выполнения рабочих операций. Оператор управляет манипуляторами, наблюдая через иллюминаторы или с помощью телевидения. Манипуляторы снабжаются сменным рабочим инструментом: захватом, черпаком, буром или стаканом для взятия проб грунта. Часть лодок можно назвать «однорукими», они имеют по одному манипулятору. На других — два и даже четыре. Из них два верхних нужны для выполнения рабочих операций, а два нижних — для закрепления лодки у дна. Пока еще подводные манипуляторы далеки от совершенства, в основном из-за того, что трудно удержать подлодку неподвижно над объектом работ. Оператору требуются минуты для выполнения действий, которые по обстановке иногда должны выполняться за секунды. Нужна большая ловкость и осторожность, особенно если хочешь поймать живое существо, даже такое сравнительно малоподвижное, как омар или краб.
28 августа 1963 года командиру американской научно-исследовательской подводной лодки «Триест-2» Кичу потребовалось 15 минут, чтобы захватить манипулятором кусок медного трубопровода погибшей подлодки «Трешер», весивший 4,5 килограмма. Пилот «Элвина» Рэйни сообщает, что также около 15 минут уходит на взятие с помощью манипулятора колонки грунта длиной 45 и диаметром 5,75 сантиметра. Эта манипуляция состояла из выбора удобного места у дна в поле зрения иллюминатора, извлечения грунтовой трубки из рамы, внедрения трубки в осадочный слой, извлечения из грунта и установки в раму. Рэйни считает, что на суше эта работа могла бы быть выполнена любым рабочим и заняла бы около минуты. Проблему составляет пока и навигация малой подводной лодки. Основные средства навигации здесь — компас, эхолот и лаг. Сложность состоит в том, что невозможно применить обычные для мореплавания ориентиры и способы определения места — по небесным светилам, маякам, знакам или радиомаякам. Малой подлодке легко «заблудиться» из-за неточного знания курса и скорости, времени, затрачиваемого на обход препятствий при плавании у дна, и главное — из-за сноса течениями.
Поэтому такая подводная лодка все время держит гидроакустический контакт с обеспечивающим надводным судном, снабженным, как правило, средствами точного кораблевождения.
На больших лодках можно установить инерциальную навигационную систему. Несмотря на то что принцип действия этой системы чрезвычайно прост, ее создание потребовало привлечения самых последних достижений в области гироскопических приборов, механики, вакуумной и вычислительной техники.
Представим себе, что нам точно известно исходное место движения подводной лодки. Переход от состояния покоя или равномерного прямолинейного движения к движению с другой скоростью невозможен без ускорений. Ускорения можно точно замерить с помощью инерциальных датчиков (акселерометров) на основе второго закона механики. По ускорениям можно рассчитать скорости и, следовательно, пройденное расстояние. Все эти операции автоматически выполняет сложный и пока относительно громоздкий комплекс аппаратуры, который и называется инерциальной системой.
Ее главное преимущество — в полной независимости от внешних источников навигационной информации. Значит, подводная лодка, определив перед погружением свое место, например радионавигационным способом или с помощью навигационных спутников Земли, может плавать довольно продолжительное время, не всплывая. При этом разница между счислимым (расчетным) и фактическим местом увеличивается незначительно. Например, во время трансполярного перехода атомной подводной лодки «Наутилус» (1958 год) ошибка в расчетном месте достигла 10 миль после прохождения подо льдами расстояния, равного 1830 милям (ошибка чуть более 0,5 процента).
Жалоба
Напишите нам, и мы в срочном порядке примем меры.