Инопланетяне и инопланетные общества. Руководство для писателя по созданию внеземных форм жизни. - Стэнли Шмидт Страница 11

Тут можно читать бесплатно Инопланетяне и инопланетные общества. Руководство для писателя по созданию внеземных форм жизни. - Стэнли Шмидт. Жанр: Научные и научно-популярные книги / Науки о космосе. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Инопланетяне и инопланетные общества. Руководство для писателя по созданию внеземных форм жизни. - Стэнли Шмидт читать онлайн бесплатно

Инопланетяне и инопланетные общества. Руководство для писателя по созданию внеземных форм жизни. - Стэнли Шмидт - читать книгу онлайн бесплатно, автор Стэнли Шмидт

«комковатость» примитивной вселенной. Сила притяжения между двумя телами пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними. (F = GMm/r2, где G — универсальная гравитационная постоянная [значения указаны в различных системах единиц в стандартных таблицах физических констант], M и m — две массы, а r — расстояние между их центрами.) Таким образом, тела, которые уже находятся близко друг к другу, притягивают друг друга сильнее, чем те, которые находятся далеко друг от друга. Таким образом, если вы посмотрите на область, в которой разреженный первичный газ немного плотнее, чем в окружающих областях, плотный «комок» будет демонстрировать тенденцию становиться ещё плотнее по мере того, как составляющие его частицы притягивают друг друга ещё ближе.

Таким образом, общая тенденция заключается в том, что материя во Вселенной распределяется всё более неравномерно. Вначале мы говорим об очень больших «комках» — о сгустках газа, которые мы пока ещё рассматриваем как довольно неплохой вакуум, распределённых по объёмам, поперечник которых измеряется миллионами световых лет, но всё равно более плотных, чем их окружение, чтобы начать вести себя как достаточно чётко очерченные сгустки, которые продолжают собираться вместе.

Вполне вероятно, что любой из этих сгустков, на какой ни посмотри, будет вращаться — очень медленно с бытовой точки зрения, но всё же обладая достаточно большим моментом импульса. Момент импульса легко вычислить для чего-то простого — например, для небольшого, но тяжёлого тела (вроде рыболовного грузила), которое раскручивают по кругу на веревочке. Вы просто умножаете массу на скорость и умножаете это на радиус окружности. (L = mvr, где L — момент импульса, v — тангенциальная скорость, а r — радиус окружности.)

Для более сложного объекта вроде галактики или чучела жирафа, вращающегося вокруг оси, продетой сквозь его плечи, вычисление момента импульса будет сложнее на практике, но не намного сложнее по своей сути. Хитрость заключается в том, чтобы рассматривать более сложную систему как состоящую из множества небольших масс, вращающихся вокруг оси, вычислить момент импульса для каждой из них, и все их сложить. (Сделать это немного труднее, чем сказать, потому что это вектор — то есть, у него есть как величина [размер], так и направление. В том маловероятном случае, если вам понадобятся подробности, их легко можно найти в стандартных пособиях по физике.)

Важной особенностью момента импульса является то, что он сохраняется, подобно энергии. То есть, если изменения происходят внутри системы (без приложения сил извне), момент импульса остаётся неизменным. Знакомым примером сохранения момента импульса является фигуристка, выполняющая вращение на льду. Если она начинает вращение с вытянутыми руками и ногой и медленно прижимает их, она вращается всё быстрее и быстрее. Поскольку каждая из частей её тела по-прежнему имеет ту же массу, но её расстояние от оси вращения уменьшается, её скорость должна увеличиваться, чтобы их произведение оставалось постоянным.

То же самое происходит с астрономически большими массами газа, которые сжимаются благодаря действию гравитации. По мере приближения вещества к оси вращения скорость вращения должна увеличиваться. Затем в игру вступает новый игрок: явление, обычно описываемое как «центробежная сила», хотя в рамках строгих физических понятий это вообще не сила, а просто тенденция (первый закон Ньютона) всего, что находится в движении, продолжать движение с той же скоростью и в том же направлении, если только на них не оказала воздействие внешняя сила. То самое рыболовное грузило, раскручиваемое на верёвочке, предпочло бы лететь по прямой (так и будет, если верёвочка порвётся). Чтобы заставить его двигаться по кругу, верёвочка должна обеспечивать центростремительную (направленную к центру) силу. Человек, который держит другой конец верёвки, ощущает силу, направленную от центра, поэтому, если верёвочка порвётся и грузило отлетит, то он, скорее всего, скажет, что это было вызвано центробежной силой.

Если медленно подтягивать верёвочку к себе, заставляя грузило описывать круги меньшего размера, но быстрее, то для того, чтобы сделать круг ещё меньше, требуется всё больше и больше усилий. Перенося этот принцип на большие газовые сгустки в космосе, вы можете понять, почему они имеют тенденцию сплющиваться: при одной и той же интенсивности гравитационное притяжение будет эффективнее притягивать материю вдоль оси вращения, чем перпендикулярно ей, поскольку в последнем случае оно должно противодействовать «центробежной» тенденции удалённой от оси материи улетать прочь по касательной. В итоге получается, что, если начать со сгустка примерно сферической формы и галактического размера, то вдоль оси, проходящей через его полюса, он будет сжиматься быстрее, чем на экваторе. Вначале у него появляется экваториальная выпуклость, а в конце он оказывается больше похожим на вращающийся диск, чем на шар. Более сложные причины часто заставляют галактики, превращающиеся в диски, образовывать спиральные рукава, похожие на лопасти детской вертушки, из-за чего они называются спиральными галактиками. Различные исходные условия и разные стадии эволюции также приводят образованию галактик других типов — например, эллиптических (действительно имеющих эллипсоидальную форму) и неправильных.

Наша Солнечная система расположена в одном из рукавов спиральной галактики, которую часто называют Млечный путь (рис. 3-3). Наша Галактика будет служить хорошей иллюстрацией того, какие размеры и расстояния присущи галактикам. В ней содержится что-то около 100 миллиардов (1011) звёзд, которые в большинстве своём расположены в диске диаметром около 100 000 световых лет и толщиной в среднем около 1500 световых лет. В нём также есть центральная выпуклость, и всё это вместе окружено приблизительно сферическим облаком горячего газа с разбросанными в нём немногочисленными звёздами, в основном в плотных шаровых скоплениях.

Солнечная система (малой частью которой является Земля) находится примерно в 30 000 световых лет от центра галактики. (Для сравнения, Земля находится всего в восьми световых минутах от Солнца.) Вот почему мы видим нашу галактику (когда мы её вообще видим) как «Млечный путь». Когда мы смотрим в этом направлении, наш взгляд направлен вдоль плоскости галактики, где на тысячи световых лет простираются плотные скопления звёзд. В других направлениях мы смотрим более или менее прямо сквозь ближайшую к нам часть диска с относительно тонким слоем звёзд, прежде чем попадаем в «пустое» межгалактическое пространство.

РИСУНОК 3-3 Диск нашей Галактики при взгляде вдоль оси, проходящей через её полюса (вверху) и с краю. Ореол почти сферической формы, окружающий диск, не показан.

«Межгалактический» — это означает на много порядков более удалённый, чем просто «межзвёздный». Как писатель-фантаст вы должны хорошо осознавать разницу в этих понятиях. Вы не можете говорить между делом о прибывших на Землю «пришельцах из

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.