Гайд по астрономии. Путешествие к границам безграничного космоса - Уоллер Уильям Страница 24

Тут можно читать бесплатно Гайд по астрономии. Путешествие к границам безграничного космоса - Уоллер Уильям. Жанр: Научные и научно-популярные книги / Науки о космосе. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Гайд по астрономии. Путешествие к границам безграничного космоса - Уоллер Уильям читать онлайн бесплатно

Гайд по астрономии. Путешествие к границам безграничного космоса - Уоллер Уильям - читать книгу онлайн бесплатно, автор Уоллер Уильям

По сравнению с системой Сириуса большинство двойных звездных систем далеко не так доброжелательны к астрономам. Они либо слишком далеки, либо слишком тесно связаны, чтобы различить их как отдельные. В таких случаях, а их довольно много, астрономы должны тщательно собрать всю прочую информацию, которая может им пригодиться для определения звездных масс. Наиболее полезными в данном случае оказались те двойные звезды, орбиты которых сильно наклонены к лучу нашего зрения. С нашей точки наблюдения общий блеск звездной системы будет периодически снижаться по мере того, как одна звезда затмевает другую. Отслеживая эти спады в течение продолжительного времени, астрономы могут определить и взаимный орбитальный период звезд, и то, насколько их орбиты совпадают с нашим лучом зрения. Если совпадение идеально, значит, движение звезд по направлению к нам и от нас в точности соответствует их орбитальным скоростям. Движение по лучу зрения, в свою очередь, можно определить по наблюдаемым доплеровским смещениям, заметным в изменениях длин волн на соответствующих спектральных линиях звезд. Учитывая эти особые обстоятельства, можно определить соотношение звездных масс в таком виде: m2 / m1 = v1 / v2 = Δλ1 / Δλ2, где масса звезды (m) обратно пропорциональна скорости звезды (v) и соответствующему доплеровскому смещению, заметному в изменении длины волны (Δλ). Как только размеры орбит будут получены из орбитального периода и скоростей, можно будет использовать третий закон Кеплера и вычислить звездные массы… Фух!

Соотношение массы, светимости и времени жизни

Если учесть все требования и сложности, связанные с определением звездных масс, вы, возможно, не удивитесь, узнав, что сколь-либо точно нам удалось «оценить» лишь пару сотен звезд. Эти драгоценные светила позволили выявить критически важную взаимосвязь между светимостью звезды главной последовательности и ее массой (рис. 6.3). По мере увеличения массы звезды наблюдаемая светимость стремительно возрастает. Более того, соотношение массы и светимости для звезд главной последовательности можно выразить формулой, имеющей вид степенного закона: L / LSun = (m / mSun)n, где показатель степени (n) составляет около 4 как для звезд солнечной массы, так и для более массивных. При столь высоком показателе степени простое удвоение массы звезды приведет к шестнадцатикратному увеличению ее светимости. Рассмотрим звезду главной последовательности класса О массой 30 M⊙. Ее светимость превысит солнечную более чем в 100 000 раз. Почему это соотношение массы и светимости столь велико и каковы последствия?

Рис. 6.3. Для соотношения массы и светимости, установленного для звезд главной последовательности, характерна резкая зависимость, при этом небольшое увеличение массы ведет к огромному увеличению светимости. (Материалы любезно предоставлены O. Y. Malkov, со ссылкой на O. Y. Malkov, “Mass-Luminosity Relation of Intermediate-mass Stars”, Monthly Notices of the Royal Astronomical Society 2007, vol. 382, pp. 1073–1086.)

Определение давления, температуры и светимости внутри звездного ядра, где проходят термоядерные реакции, выходит за рамки данного путеводителя для начинающих. Достаточно сказать, что добавление массы создает соразмерно большее давление в ядре, вызванное тяжестью вышележащих слоев. Уравнение состояния идеального газа гласит, что температура напрямую связана с давлением и поэтому будет повышаться с любым увеличением массы звезды. Мы уже видели, что светимость зависит от четвертой степени температуры, и поэтому нетрудно представить, что она будет зависеть от чего-то близкого к четвертой степени звездной массы. И этот правдоподобный аргумент ведет к вопросу: «Как долго звезда может излучать энергию при подобной светимости?»

Можно подойти к этой проблеме, сравнив доступное «топливо» (которое составляет некоторую долю массы звезды [m]) с уровнем его расхода или «горением» (которое можно отождествить со светимостью звезды [L]). Оценить, как долго будет светить звезда, мы сумеем, разделив доступное «топливо» на «горение». При привязке к Солнцу приблизительное время жизни звезды (τ) составляет: τ / τSun = (m / MSun) / (L / LSun).

Если светимость (L) заменить на ее эквивалент по массе, то в со ответствии с зависимостью «масса — светимость» это соотношение, призванное установить время жизни звезды, сведется к формуле: τ / τSun = (m / MSun)–3,0.

Здесь перед нами еще один экстремальный степенной закон. На этот раз он ясно показывает, что возрастание массы приводит к значительному сокращению времени жизни звезды. Общую продолжительность термоядерных реакций в недрах Солнца можно рассчитать исходя из его массы (MSun = 2 ^ 1030 кг), массы солнечного ядра (примерно 10 % от общей массы), доли этой массы, которая подвергается термоядерному синтезу (около 0,007 массы ядра), соответствующей энергии, которая высвобождается за время жизни Солнца и определяется согласно знаменитому уравнению Альберта Эйнштейна Е = mc2 и измеренной светимости Солнца (LSun = 4 ∙ 1026 Вт). Все это сводится к общей продолжительности термоядерных реакций в ядре Солнца, выражаемой в виде следующей формулы: τSun = ESun / LSun = (0,007 0,1 mSun) c2 / LSun.

Подставив значения для mSun и LSun, мы получим ожидаемую продолжительность термоядерных реакций в ядре Солнца примерно в 10 млрд лет (1010 лет), так что сейчас мы находимся примерно на полпути. Если подставить эту приблизительную цифру в предыдущее соотношение, по которому мы высчитывали относительное время жизни звезды, то расчетная продолжительность жизни звезды главной последовательности выразится так: τ = 1010 (m / MSun)–3,0 лет, и это оказывается достаточным приближением к тому, что показывают более сложно устроенные звездные модели (табл. 6.2). Например, расчетное время жизни звезды главной последовательности класса В3 массой 10 M⊙ составляет всего 10 млн лет, в то время как звезда класса К5 массой 0,7 M⊙ должна просуществовать около 30 млрд лет — это намного дольше, чем нынешний возраст самой Вселенной в 13,8 млрд лет.

Таблица 6.2

Физические свойства ближайших звезд главной последовательности

Спектральный класс

Масса (солнечная масса, m

Sun

)

Светимость (солнечная светимость, L

Sun

)

Время жизни, лет

Относительная распространенность, %

O

> 16 m Sun

> 30,000 L Sun

< 5 млн

0,00003

B

16–2,1 m Sun

30 000–25 L

5–840 млн

0,13

Sun

A

2,1–1,4 m Sun

25–5 L

0,84–2,8 млрд

0,6

Sun

F

1,4–1,0 m Sun

5–1,5 L

2,8–6,9 млрд

3,0

Sun

G

1,0–0,8 m Sun

1,5–0,6 L

6,9–13 млрд лет

7,6 %

Sun

K

0,8–0,5 m Sun

0,6–0,1 L

13–56 млрд лет

12,1 %

Sun

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.