Анатолий Томилин - Занимательно о космологии Страница 33
Анатолий Томилин - Занимательно о космологии читать онлайн бесплатно
От планиметрии — геометрии на плоскости — Эвклид переходит в последних трех книгах к геометрии в пространстве — стереометрии. Что же подразумевал Эвклид под пространством? В руках у вас, читатель, книга. Считайте ее плоскостью. А теперь поднимите ее плашмя над столом и опустите снова. Объем, который прошла книга при этом движении, и есть эвклидово пространство. Просто, правда? В этом пространстве должны быть удовлетворены все постулаты и аксиомы Эвклида, потому что они суть его свойства. Да и кому в голову придет усомниться, например, в том, что прямую линию можно продолжать в бесконечность. Или что пространство всюду обладает одними и теми же свойствами, что позволяет свободно передвигать любые фигуры в пространстве, не нарушая их внутренних связей.
От абстрактного геометрического понятия эвклидова пространства легко перейти к физическому пространству, в котором мы с вами живем и двигаемся. А приложив к миру Эвклида наглядные декартовы координаты, мы добиваемся полного слияния двух геометрий: геометрии Эвклида и геометрии физического мира.
Можно сказать даже, что слишком легко понятия геометрии: точка, линия, фигура, тело — отождествляются с наблюдаемыми объектами. И хотя геометрическая точка является идеализацией точки физической, так и кажется, что подобная идеализация никак не может нарушить основ геометрии. Геометрические объекты физического мира казались настолько тождественными объектам, с которыми имеет дело геометрия, что из этого кажущегося тождества выросла уверенность в том, что для описания пространства физического мира даже формально не может быть построено другой геометрии, кроме эвклидовой. То есть, что геометрия Эвклида — это и есть единственно возможная геометрия физического мира!
Внимательный читатель должен был заметить небольшой логический «кувырок», поставивший взаимоотношения геометрий Эвклида и реального мира в нашем представлении с ног на голову. Родившись и пребывая в своем первоначальном состоянии в качестве предисловия к физике, геометрия воспользовалась полным отвлечением пространственных форм и отношений от материального содержания и превратилась в отрасль чистой математики. Превратилась, чтобы затем подменить собой систему взглядов, описывающих реальный мир. Это было тем более опасно, что, основанная на аксиомах и постулатах, эвклидова геометрия, хоть и вытекала из опыта, проблемой согласования своих выводов с опытом не интересовалась.
Подобные метаморфозы в истории науки не новость. Метод Эвклида был очень похож на метод Аристотеля. Точно так же постулировал Аристотель целый ряд свойств сил и их действий на тела, находящиеся в движении. Понадобился Галилей, чтобы возник вопрос об опытной проверке законов Аристотеля. И тогда казавшаяся совершенной логическая схема стагирского философа и построенная на ее основе механика оказались просто неверными. Галилей с помощью опыта опроверг Аристотеля и открыл дорогу новым законам механики.
Нечто подобное предстояло совершить и с геометрией Эвклида. Но лишь в конце XIX столетия люди поняли, что положения геометрии, описывающие свойства физического пространства, тоже можно и нужно проверять на опыте, как это делают с любыми законами физики. И это было великим открытием.
Царь Мидас из страны математикиКарл Фридрих Гаусс родился в Брауншвейге, в семье зажиточного мастера-водопроводчика, 30 апреля 1777 года. Мальчик часто поражал взрослых своими способностями к счету. Сохранилась даже легенда, как однажды трехлетний Карл поправил отца, допустившего ошибку в расчетах с подсобниками. Можно предположить, что именно эти способности привели юного наследника почтенного ремесленника в стены Геттингенского университета. Здесь студент Карл Гаусс со всей основательностью принялся за изучение математики. Геометрия Эвклида поразила и покорила его. Как и многие другие до него и после, Гаусс отдал немало сил честолюбивому стремлению доказать пятый постулат. Правда, в отличие от других он скоро убедился в принципиальной невозможности его доказательства. Одновременно выяснилась удивительная вещь: пятый постулат был настолько не связан с остальными, что, заменив его другим, можно было построить стройную систему взглядов, может быть, несколько иных, чем эвклидовы, но так же непротиворечивых. Даже допущение ошибочности пятого постулата не входило в противоречие с остальными четырьмя… Нет, молодому Гауссу не удалось превратить пятый постулат Эвклида в теорему. Но эта попытка дала ему прекрасное знание основ геометрии и на всю жизнь привила будущему математику любовь к этой строгой науке.
Заботясь о своем авторитете первого математика мира, Гаусс в дальнейшем никогда больше не возвращался к пятому постулату. Но он на всю жизнь сохранил к нему интерес и ревнивое отношение к работам других математиков, касавшихся этой темы.
Со времен Эвклида верхом искусства геометров считалось умение построить с помощью только циркуля и линейки правильный пятиугольник, который потом, умножая его стороны, можно было бы превратить в десятиугольник, пятнадцатиугольник и т. д. Гаусс-студент открывает способ построения семнадцатиугольника. А через пять лет после окончания университета выпускает большой труд под названием «Арифметические исследования». Здесь, в последнем разделе своего сочинения, он приводит полностью разработанную теорию деления круга. Теперь математики могли строить любые многоугольники, не хвастаясь своим искусством.
В канун нового, XIX столетия, прямо в новогоднюю ночь, аббат ордена театинцев, основатель и директор астрономической обсерватории в Палермо, на острове Сицилия, Джузеппе Пиацци открыл первую малую планету в «пустом» промежутке между Марсом и Юпитером. В честь богини плодородия — покровительницы Сицилии — он назвал ее Церерой и написал о том в Миланскую и Берлинскую обсерватории. Неожиданно Пиацци заболел. Долгое время он был лишен возможности подходить к своему телескопу. Между тем на Европейском континенте бушевали наполеоновские войны. Италия была наводнена воюющими армиями, и письма астронома ползли черепашьими темпами. Когда же они наконец достигли адресатов, то, сколько ни всматривались астрономы в звездные россыпи, новооткрытой планеты нигде не было видно. Она вошла в соединение с Солнцем и безнадежно потерялась в его лучах. У Пиацци остались данные наблюдений движения беглянки всего лишь по небольшой дуге в несколько градусов. Сколько он ни бился над решением построения всей орбиты по этим скудным данным, ничего у него не получалось. Все положения, где должна была находиться планета после того, как она покинула район Солнца на небесной сфере, оказывались ложными. Церера была безнадежно потеряна. И вот тогда этим вопросом занялся Гаусс, малоизвестный приват-доцент Брауншвейгского университета. Он изобретает новый точный способ вычисления орбиты небесного тела всего по трем измерениям и указывает место, где должна находиться исчезнувшая планета. Новогодняя история получила достойное завершение. Цереру, по указаниям Гаусса, отыскали в последнюю ночь 1801 года. Имя Гаусса получило широкую известность.
Между тем должность приват-доцента начала тяготить математического гения. Она давала ему всего восемь талеров в месяц. Этого было достаточно, чтобы не умереть с голоду, но слишком мало, чтобы заниматься наукой, не думая о том, как свести концы с концами. Гаусс ищет выход. Петербургский академик Фусс, с которым молодой человек поддерживал переписку, предложил перебраться в Россию. Там он обещал Гауссу место астронома и директора обсерватории с квартирой и окладом в тысячу рублей в год. Фусс гарантировал Гауссу избрание в действительные члены императорской академии и дальнейшее улучшение жизненных условий. Гаусс решил ехать. Случайно о его решении узнает эрцгерцог Брауншвейгский. Щедрым жестом он предлагает математику 400 талеров годового жалованья с тем условием, что тот не покинет родину. Тщательно взвесив все «за» и «против», практичный Гаусс остается в Брауншвейге.
В 1802 году вторую малую планету открыл близкий друг Гаусса, известный уже нам врач и астроном-любитель Генрих Вильгельм Матеус Ольберс. Он назвал ее Палладой в честь дочери Зевса — Афины. И снова Гаусс вычислил ее орбиту, пользуясь своим методом. Результаты этих исследований, обработанные со скрупулезной точностью, появились в 1809 году в сочинении «Теория движения небесных тел». Эта работа принесла молодому математику всемирную славу. С 1807 года Гаусс — член Геттингенского ученого общества. В том же году он получает кафедру математики и астрономии в Геттингенском университете и до конца жизни не покидает Геттингена.
Лишь раз по настойчивому приглашению Александра Гумбольдта выезжает он в Берлин на съезд естествоиспытателей.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.