Лев Мухин - В нашей галактике Страница 6

Тут можно читать бесплатно Лев Мухин - В нашей галактике. Жанр: Научные и научно-популярные книги / Науки о космосе, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Лев Мухин - В нашей галактике читать онлайн бесплатно

Лев Мухин - В нашей галактике - читать книгу онлайн бесплатно, автор Лев Мухин

Но неужели все так просто и жизнь Солнца физик опишет только законом поведения идеального газа? Ведь если бы действовал только этот физический закон, Солнце очень быстро рассеялось бы в космическом пространстве?

Все мы знаем, что, прежде чем выйти из корабля в открытый космос, космонавту нужно пройти шлюзовую камеру. Это необходимо для предотвращения разгерметизации корабля. Если нарушена герметизация, в кабине корабля установится космический вакуум. Ведь давление газа в окружающем космическом пространстве ничтожно, а внутри корабля велико. Вот газ и стремится выйти наружу. То же происходит, когда разгерметизируется кабина самолета. К счастью, это бывает редко. Но когда случается, жизни пассажиров угрожает опасность, так как они сразу вынуждены дышать воздухом на высоте большей, чем Эверест.

Так в чем секрет? Почему наш огромный раскаленный газовый шар не рассеялся в космическом пространстве? Ведь газ в недрах Солнца находится под чудовищным давлением, а вне Солнца — пустота, глубокий вакуум. Дело в том, что благодаря своей огромной массе Солнце сжато силами гравитации, и именно эти силы препятствуют тепловому разлету его вещества в космос.

В наружных слоях Солнца тепловая скорость частиц газа порядка 10 километров в секунду. И не будь гравитации, уже за 10 дней радиус Солнца увеличился бы в 10 раз.

Точно так же как на Земле каждый человек чувствует свой вес, так и на Солнце каждая частичка «знает», что ей никогда не вырваться из гравитационного плена нашей звезды. Вот причина равновесия Солнца. Высокие температуры газа препятствуют силам гравитации совершить катастрофу и заставить сжаться наше Солнце, а гравитация, со своей стороны, «дисциплинирует» Солнце, заставляя его находиться в определенных «рамках».

Все просто и хорошо: мы с вами выяснили, какие силы управляют Солнцем, и, наверное, у многих читателей сложилось впечатление, что Эддингтон был прав, когда говорил: «Нет ничего проще, чем звезда». Быть может, у некоторых появилось даже легкое чувство обманутых надежд: а где же обещанные тайны, проблемы, загадки? Будут и тайны и загадки. Они впереди. И нам еще придется вспомнить, что сказал Фейнман о состоянии дел в современной физике.

Повнимательнее вглядимся в источник светимости Солнца — термоядерные реакции. Сначала решим простой вопрос. Ведь если идет термоядерная реакция (неважно, по какому конкретному механизму), она резко повышает температуру вещества. Это, в свою очередь, должно обязательно повысить скорость процессов, что чревато для звезды весьма опасной возможностью: уподобиться огромной водородной бомбе, в которой термоядерная реакция носит характер взрыва.

Но Солнце светит стабильно, как будто бы не взрывается, и, следовательно, внутри нашей звезды есть механизмы, регулирующие скорость термоядерного синтеза. Что же это за механизмы? Да в общем-то опять школьная физика, все та же формула Клайперона. По этой формуле, если повысить температуру объема газа, немедленно произойдет его расширение, отчего газ тут же охладится. Вот поэтому в Солнце существует жесткий механизм обратной связи, и термоядерные реакции не могут идти в недрах Солнца с произвольной скоростью. Их скорость полностью определяется самой структурой Солнца.

Каковы эти реакции? Главным образом те же, что вызывают взрыв водородной бомбы, — слияние четырех ядер водорода — протонов через ряд промежуточных реакций в ядро атома гелия. Это так называемый протон-протонный цикл. Ядро атома гелия весит чуть меньше, чем четыре протона, и в соответствии со знаменитой формулой Эйнштейна E = mc2 эта разница в массе переходит в энергию, которая и идет на разогрев вещества.

Существует еще один тип ядерных реакций, играющий роль в энергетике Солнца, — это углеродно-азотно-кислородный цикл (С,N,О-цикл), причем его конечный результат, так же как и в протон-протонном цикле, — образование атома гелия из четырех ядер атома водорода.

Здесь происходят очень интересные вещи. Все начинается с того, что ядро углерода захватывает протон — ядро атома водорода — и превращается в радиоактивный азот, который, распадаясь, дает более тяжелый изотоп углерода. Этот изотоп тоже захватывает протон и превращается в обычный азот. Но и азот стремится захватить ядро водорода, тем более что недостатка в водороде внутри Солнца нет. Поглотив протон, ядро азота превращается в радиоактивный кислород, а тот, распадаясь, — в стабильный изотоп азот-15. Азот-15 опять захватывает протон. Но даже в недрах Солнца жадность наказуема: распухшее ядро азота-15 с лишним протоном не в состоянии удержать захваченное и распадается на исходное ядро атома углерода-12 и ядро атома гелия.

В результате начавшее всю цепочку захвата ядро углерода-12 осталось «при своем интересе» и вышло из игры, а из четырех захваченных ядер водорода образовалось ядро гелия. Снова работает соотношение E = mc2, и разность масс между четырьмя протонами и ядром гелия превращается в энергию.

В отличие от первого механизма в различных этапах реакций С,N,О-цикла участвуют атомы углерода, кислорода и азота. Именно поэтому его и назвали С,N,О-цикл. Но если за счет протон-протонного процесса Солнце получает 98 процентов своей энергии, то за счет углеродно-азотно-кислородного процесса только два процента.

Ядерные реакции могут идти не только в недрах Солнца, где высокие температуры обеспечивают их течение. Они могут происходить и в атмосфере Солнца, за счет ускорения заряженных частиц до высоких энергий. Но об этом мы поговорим позже. Сейчас же отметим один принципиальный факт, который, скажем прямо, уже долгое время не дает покоя астрофизикам. Дело в том, что при всех ядерных реакциях, о которых мы говорили, образуются (кроме всего прочего) нейтрино — элементарные частицы, представители микромира с удивительными свойствами. И сейчас нам нужно будет поговорить о трех тесно связанных между собой областях человеческой деятельности — гениальном теоретическом предвидении, внутреннем строении Солнца и… бытовой химии.

Загадка солнечных нейтрино

Все началось очень просто. В начале 20-х годов нынешнего столетия в легендарный институт Н. Бора в Копенгагене приехал склонный к полноте молодой человек по имени В. Паули. В здании института царила сугубо неофициальная обстановка. Жена Бора угощала студентов бутербродами, они играли днем в пинг-понг, по институту сновали сыновья Бора. Бор страшно любил ковбойские фильмы и часто ходил со студентами в кино. Днем времени на работу у учеников Н. Бора оставалось немного, и работали они главным образом по ночам.

Это была счастливая эра физики, когда основы современной науки закладывали совсем молодые люди в возрасте между двадцатью и тридцатью годами. Сам Бор на семинарах никого не критиковал, но его студентов нельзя было назвать застенчивыми людьми, они не стеснялись сказать друг другу: «Вы не правы», когда кому-нибудь казалось, что он заметил ошибку. Вот в такую обстановку окунулся сын венского профессора биологии В. Паули.

О Паули ходит много легенд и анекдотов. Свой отнюдь не ангельский характер он проявил еще в Мюнхенском университете, где Эйнштейн читал лекцию по теории относительности. После лекции 18-летний Паули поднял руку и, когда ему предоставили слово, глубокомысленно заявил: «А знаете, то, что рассказывал нам господин Эйнштейн, вовсе не так уж глупо…»

Да, этот молодой человек был лишен чувства ложной скромности. У него был острый и злой язык. Но единственное, что его оправдывало, абсолютная научная честность и требовательность по самым высоким меркам к своим научным работам. О характере Паули свидетельствует еще один случай. На одной научной конференции молодого ученого представили известному физику П. Эренфесту из Лейденского университета. Как обычно, Паули начал беседу с очередной грубости. «Ваши научные работы нравятся мне намного больше, чем вы сами», — сказал ему обиженный Эренфест. Что-что, а за словом в карман Паули не лез никогда. «Странно, — ответил он, — а мне как раз наоборот». Неудивительно, что его называли молодым человеком, вселяющим ужас. Правда, с Эренфестом они впоследствии подружились.

Самому Бору Паули кричал: «Замолчите! Не стройте из себя дурака…» — «Но, Паули, послушайте…» — робко возражал Бор. «Нет, нет. Это чушь. Не буду больше слушать ни слова». И все же, несмотря на подобного рода выходки, Паули пользовался непререкаемым авторитетом в среде физиков-теоретиков.

К экспериментаторам он относился с пренебрежением, иногда просто не замечал их. Он панически боялся всякого, даже сравнительно простого технического устройства. И нужно сказать, что приборы тоже боялись Паули. В его присутствии они просто отказывались работать. Это явление получило название «эффекта Паули».

Однажды в Геттингенском университете взорвалась по неизвестной причине вакуумная установка. Причину взрыва перестали искать, когда выяснилось, что перед самым взрывом на Геттингенский вокзал прибыл поезд, в котором находился Паули…

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.