Марьяна Безруких - Возрастная физиология: (Физиология развития ребенка) Страница 42
Марьяна Безруких - Возрастная физиология: (Физиология развития ребенка) читать онлайн бесплатно
В процессе онтогенеза происходит постепенное созревание различных элементов функциональной системы, регулирующей водно-солевой гомеостаз, благодаря чему увеличиваются резервные возможности организма по поддержанию водно-электролитного равновесия. Морфофункциональное развитие почек происходит в течение длительного времени. Раньше всего возникает способность системы регулировать содержание воды в организме. Поэтому уже к 7 годам детский организм достаточно эффективно устраняет избыток воды и экономит жидкость при ее недостатке. Что же касается ионной регуляции, то она формируется только к 10–11 годам. При этом у детей одного и того же календарного возраста не всегда одинаковый уровень развития функций почек. То есть у разных детей-одногодок уровень развития гомеостатической системы может соответствовать более старшему или более младшему возрасту.
Мочеиспускание. Поступающая по мочеточнику моча собирается в мочевом пузыре — гладкомышечном мешковидном органе, внутренние стенки которого выстланы эпителиальной тканью, а выход из него запирается специальным кольцеобразным мышечным сфинктером. Скопившаяся в мочевом пузыре моча растягивает его стенки и раздражает расположенные там механорецепторы. Дуга мочеиспускательного рефлекса замыкается через спинномозговой центр, расположенный в крестцовом отделе. Импульсы от спинного мозга заставляют сфинктер расслабиться, а гладкую мускулатуру стенок пузыря сократиться. В результате моча выливается наружу через мочеиспускательный канал. Однако все взрослые млекопитающие, в том числе человек, умеют сознательно управлять актом мочеиспускания. Это обеспечивается контролем со стороны коры головного мозга на основе условных рефлексов. Обычно эти рефлексы у детей формируются к 2 годам настолько прочно, что спонтанное мочеиспускание не происходит ни днем, ни ночью. Однако разного рода стрессы, переутомление, переохлаждение, нарушения сна, неправильный двигательный режим, а также чрезмерные физические и психические напряжения могут приводить к ослаблению этого рефлекса даже у детей школьного возраста вплоть до полового созревания. Тогда возникает ночное недержание мочи — энурез. Дети нередко очень чувствительны к этому своему «недостатку», хотя их вины в этом обычно нет. Ни в коем случае нельзя упрекать и тем более наказывать ребенка в подобной ситуации. Помочь в преодолении этого функционального нарушения могут врачи — психоневролог, уролог и невропатолог.
Вопросы и задания1. Как закон сохранения энергии реализуется в деятельности организма?
2. Что такое биологическое окисление и как оно происходит?
3. Зачем организму энергия?
4. Назовите три основных способа получения энергии в клетке.
5. Что такое энергетический обмен и как он изменяется с возрастом?
6. Как с возрастом меняются способы терморегуляции организма?
7. Из чего состоит пища человека?
8. Сколько нужно пищи ребенку и взрослому?
9. Что такое витамины, зачем они нужны? Назовите источники витаминов.
10. Перечислите особенности пищеварения младенца.
11. Что происходит с пищей в желудке и чем желудок ребенка отличается от желудка взрослого?
12. Что происходит с пищей в кишечнике и чем кишечник ребенка отличается от кишечника взрослого?
13. Что делают и как устроены почки?
14. В чем особенность выделительной системы детей?
15. Что такое энурез и почему он возникает?
Глава 8. СИСТЕМА КИСЛОРОДНОГО ОБЕСПЕЧЕНИЯ ОРГАНИЗМА
Непрерывно идущие в каждой клетке организма окислительно-восстановительные реакции нуждаются в постоянном притоке субстратов окисления (углеводов, липидов и аминокислот) и окислителя — кислорода. В организме имеются внушительные запасы питательных веществ — углеводные и жировые депо, а также огромный запас белков в скелетных мышцах, поэтому даже сравнительно длительное (в течение нескольких суток) голодание не приносит человеку существенного вреда. А вот запасов кислорода в организме практически нет, если не считать небольшого количества, содержащегося в мышцах в форме оксимиоглобина, поэтому без его поставки человек способен выжить лишь 2–3 мин, после чего наступает так называемая «клиническая смерть». Если в течение 10–20 мин снабжение клеток мозга кислородом не восстановится, в них произойдут такие биохимические изменения, которые нарушат их функциональные свойства и приведут к скорой гибели всего организма. Другие клетки тела при этом могут и не пострадать в такой степени, но нервные клетки крайне чувствительны к недостатку кислорода. Вот почему одной из центральных физиологических систем организма является функциональная система кислородного обеспечения, и состояние именно этой системы чаще всего используется для оценки «здоровья».
Рис. 18. Транспорт кислорода у человека (направление показано стрелками)
Понятие о кислородном режиме организма. Кислород проходит в организме достаточно длинный путь (рис. 18). Попадая внутрь в виде молекул газа, он уже в легких принимает участие в целом ряде химических реакций, обеспечивающих его дальнейшую транспортировку к клеткам тела. Там, попадая в митохондрии, кислород окисляет разнообразные органические соединения, превращая их в конечном счете в воду и углекислоту. В таком виде кислород и выводится из организма.
Рис. 19. Каскад напряжений кислорода во вдыхаемом воздухе (I), в альвеолах (А), артериях (а) и венах (V) у мальчика 5 лет, подростка 15 лет и взрослого 30 лет
Что заставляет кислород из атмосферы проникать в легкие, затем — в кровь, оттуда — в ткани и клетки, где уже он вступает в биохимические реакции? Очевидно, что существует некая сила, определяющая именно такое направление перемещения молекул этого газа. Эта сила — градиент концентраций. Содержание кислорода в атмосферном воздухе намного больше, чем в воздухе внутрилегочного пространства (альвеолярном). Содержание кислорода в альвеолах — легочных пузырьках, в которых происходит газообмен воздуха с кровью, — намного выше, чем в венозной крови. Ткани содержат кислорода гораздо меньше, чем артериальная кровь, а митохондрии содержат незначительное количество кислорода, поскольку поступающие в них молекулы этого газа немедленно вступают в цикл окислительных реакций и превращаются в химические соединения. Вот этот каскад постепенно понижающихся концентраций, отражающий градиенты усилия, в результате которых кислород из атмосферы проникает в клетки тела, и принято называть кислородным режимом организма (рис. 19). Вернее, кислородный режим характеризуется количественными параметрами описанного каскада. Верхняя ступенька каскада характеризует содержание кислорода в атмосферном воздухе, который во время вдоха проникает в легкие. Вторая ступенька — содержание О2 в альвеолярном воздухе. Третья ступенька — содержание О2 в артериальной крови, только что обогащенной кислородом. И наконец, четвертая ступенька — напряжение кислорода в венозной крови, которая отдала содержавшийся в ней кислород тканям. Эти четыре ступеньки образуют три «пролета», которые отражают реальные процессы газообмена в организме. «Пролет» между 1-й и 2-й ступеньками соответствует легочному газообмену, между 2-й и 3-й ступеньками — транспорту кислорода кровью, а между 3-й и 4-й ступеньками — тканевому газообмену. Чем больше высота ступеньки, тем больше перепад концентраций, тем выше градиент, при котором кислород транспортируется на этом этапе. С возрастом увеличивается высота первого «пролета», то есть градиент легочного газообмена, второго «пролета», т. е. градиент транспорта 02 кровью, тогда как высота третьего «пролета», отражающего градиент тканевого газообмена, снижается. Возрастное уменьшение интенсивности тканевого окисления является прямым следствием снижения с возрастом интенсивности энергетического обмена.
Таким образом, усвоение кислорода организмом происходит в три стадии, которые разделены в пространстве и во времени. Первая стадия — нагнетание воздуха в легкие и обмен газов в легких — носит еще название внешнего дыхания. Вторая стадия — транспорт газов кровью — осуществляется системой кровообращения. Третья стадия — усвоение кислорода клетками организма — называется тканевым, или внутренним дыханием.
ДыханиеОбмен газов в легких. Легкие представляют собой герметичные мешки, соединенные с трахеей с помощью крупных воздухоносных путей — бронхов. Атмосферный воздух через носовую и ротовую полость проникает в гортань и далее в трахею, после чего разделяется на два потока, один из которых идет к правому легкому, другой к левому (рис. 20). Трахея и бронхи состоят из соединительной ткани и каркаса из хрящевых колец, которые не позволяют этим трубкам перегибаться и перекрывать воздухоносные пути при различных изменениях положения тела. Войдя в легкие, бронхи разделяются на множество ответвлений, каждое из которых вновь делится, образуя так называемое «бронхиальное дерево». Самые тонкие веточки этого «дерева» называются бронхиолами, и на их концах располагаются легочные пузырьки, или альвеолы (рис. 21). Количество альвеол достигает 350 млн, а их общая площадь — 150 м2. Именно эта поверхность и представляет собой площадь для обмена газами между кровью и воздухом. Стенки альвеолы состоят из одного слоя эпителиальных клеток, к которому вплотную подходят тончайшие кровеносные капилляры, также состоящие из однослойного эпителия. Такая конструкция благодаря диффузии обеспечивает сравнительно легкое проникновение газов из альвеолярного воздуха в капиллярную кровь (кислород) и в обратном направлении (углекислый газ). Этот газообмен происходит в результате того, что создается градиент концентрации газов (рис. 22). Находящийся в альвеолах воздух содержит относительно большое количество кислорода (103 мм рт. ст.) и малое количество углекислого газа (40 мм рт. ст.). В капиллярах, наоборот, концентрация углекислого газа повышена (4(5 мм рт. ст.), а кислорода понижена (40 мм рт. ст.), поскольку в этих капиллярах находится венозная кровь, собранная уже после того, как она побывала в тканях и отдала им кислород, получив взамен углекислый газ. Кровь по капиллярам протекает непрерывно, а воздух в альвеолах обновляется при каждом вдохе. Оттекающая от альвеол обогащенная кислородом (до 100 мм рт. ст.) кровь содержит сравнительно мало углекислого газа (40 мм рт. ст.) и вновь готова к осуществлению тканевого газообмена.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.