Стивен Строгац - Ритм Вселенной. Как из хаоса возникает порядок Страница 14
Стивен Строгац - Ритм Вселенной. Как из хаоса возникает порядок читать онлайн бесплатно
Его следующей задачей была разработка подробной теории «подтягивания» частот.
К сожалению, когда он попытался подкрепить свои догадки строгими математическими доказательствами, он столкнулся с непреодолимыми трудностями. Он представил ряд грубых рассчетов, но они выглядели весьма неуклюже и вели в никуда. Винер умер в 1964 г., так и не решив одну из важнейших для себя задач. Годом позже одному из студентов удастся найти правильный подход к ее решению.
В то время Арт Уинфри был старшим научным сотрудником в Корнельском университете и занимался технической физикой. Он давно мечтал стать биологом, однако вместо того чтобы идти к своей цели проторенным путем, он решил основательно пополнить багаж своих знаний по математике и физике, надеясь освоить новый для себя инструментарий. Электроника и компьютеры, квантовая механика и дифференциальные уравнения – этими инструментами биологи в то время, как правило, не пользовались.
Когда Уинфри размышлял над проблемой группового синхронизма, он думал о самих осцилляторах, а не просто об их частотах[39]. В этом отношении его концептуализация данной проблемы была гораздо более подробно разработанной, чем у Винера. Он не просто характеризовал каждый осциллятор частотой, на которой тот работает (его местоположением на политическом спектре, если вернуться к нашей предыдущей аналогии), а изображал его работу шаг за шагом, на протяжении всего цикла, что является, в конце концов, самым существенным для каждоно осциллятора. Это сразу же привело к сложностям, которые заставили бы опустить руки любого другого – только не Уинфри[40]. Преимущество молодости в том и состоит, что в эту пору жизни для вас нет почти ничего невозможного.
Свою модель он совершенно сознательно сделал приблизительной. Он намеревался сделать ее достаточно общей, чтобы ее можно было применить к любой популяции биологических осцилляторов. Единственым способом охватить одной моделью типичные характеристики стрекочущих сверчков, мерцающих светлячков, пульсирующих нейронов, задающих ритм, и тому подобных объектов было не обращать внимания на все их биохимические различия, а вместо этого сосредоточиться исключительно на двух вещах, типичных для всех биологических осцилляторов: их способности отправлять и принимать сигналы.
Запутанность этой проблемы обусловлена тем, что оба указанных свойства изменяются в течение цикла осциллятора: влияние и чувствительность являются функциями фазы. Например, цикл светлячка состоит из внезапной вспышки, затем следует интервал темноты (пока светлячок перезаряжает орган, который обеспечивает свечение), затем следует очередная вспышка и т. д. Эксперименты показали, что светлячки на приемном конце замечают вспышку другого светлячка, но игнорируют темноту. Поэтому в математическом описании, предложенном Уинфри, «функция влияния» должна изменяться в промежутке между двумя уровнями: высоким во время вспышки и близким к нулю во время темноты. Аналогично «функция чувствительности» показывает, как осциллятор реагирует на принимаемые им сигналы. Увидев вспышку в течение одной части своего цикла, светлячок может ускорить работу своего внутреннего таймера. Увидев точно такую же вспышку в течение какой-либо другой части цикла, светлячок может замедлить работу своего внутреннего таймера или вообще не влиять на его работу. Чтобы полностью охарактиризовать любой осциллятор в своей модели, Уинфри было достаточно использовать эти две функции. Выбрав эти две функции, можно было определить поведение осциллятора и как отправителя, и как получателя сигналов.
Чтобы сделать эти идеи как можно более конкретными, представим осциллятор в виде бегуна трусцой, бегущего по круговой дорожке стадиона. Разные места на этой дорожке представляют разные фазы цикла биологической активности осциллятора. Если дорожка представляет, например, менструальный цикл, то одна из ее точек соответствовала бы овуляции. Другая, соответствующая примерно половине длины дорожки, соответствовала бы менструации, а места между этими двумя точками соответствовали бы промежуточным гормональным событиям. После совершения одного круга бегун снова вернулся бы в точку овуляции. Или, если такая дорожка должна представлять ритм мерцания светлячка, разные ее места означали бы свечение как таковое, сопровождаемое разными стадиями биохимического восстановления, в ходе которого орган, отвечающий за свечение этого насекомого, перезаряжается и готовится к своему очередному свечению.
Если следовать подобной логике, то два связанных осциллятора будут похожи на двух бегунов, которые во время бега постоянно обмениваются между собой командами. Что именно они кричат друг другу и насколько громко они произносят эти слова, определяется их текущими местоположениями на дорожке: эта информация заключена в функции влияния, предложенной Уинфри. Если, например, величина функции влияния одного бегуна в данный момент мала и положительна, он кричит другому бегуну: «Беги, пожалуйста, немного быстрее». С другой стороны, высокое отрицательное значение функции влияния означает: «Ты бежишь слишком быстро. Помедленнее, пожалуйста!» А нулевое значение функции влияния вообще ничего не означает для партнера. С течением времени оба бегуна продолжают свой бег по дорожке, поэтому выкрикиваемые ими команды продолжают меняться от момента к моменту.
Такая картина носит слишком общий характер. Она может учитывать импульсные взаимодействия, используемые светлячками, сверчками и нейронами (аналогично внезапному крику, за которым следует молчание в течение остальной части цикла), или постоянное подталкивание и подтягивание феромонов, обнаруженное Макклинток и Стерном для менструального цикла (постоянно меняющаяся последовательность требований ускориться или замедлиться).
Между тем оба бегуна и прислушиваются к командам своего партнера, и выкрикивают их. Как именно они реагируют на поступающее сообщение, определяется другой функцией Уинфри – функцией чувствительности, которая также бывает разной в разных местах дорожки. Когда чувствительность оказывается высокой и положительной, бегун демонстрирует покладистость и выполняет любые инструкции, которые поступают ему в данный момент. Если же чувствительность равна нулю, он не обращает внимания на эти инструкции. А если чувствительность отрицательна, бегун поступает вопреки принимаемым им инструкциям: он ускоряется, когда от него требуют замедлиться, и наоборот. В данном случае модель также носит слишком общий характер, как и модель Пескина, которую мы обсуждали в предыдущей главе (она предполагала, что осцилляторы всегда продвигаются вперед, когда их подталкивает импульс). В модели Уинфри фазу осциллятора можно либо продвинуть вперед, либо задержать в зависимости от того, на каком этапе своего цикла этот осциллятор принял импульс. Эксперименты показали, что именно так ведут себя реальные биологические осцилляторы.
Для большей простоты Уинфри предположил, что все осцилляторы в данной популяции имеют одинаковые функции влияния и чувствительности. Но он допустил возможность разнообразия так же, как сделал до него Винер: он предположил, что естественные частоты осцилляторов распределены по всей популяции в соответствии с колоколообразной кривой. Если продолжить нашу аналогию с бегунами на дорожке стадиона, то такую популяцию осцилляторов следовало бы представить в виде клуба любителей бега трусцой, тысячи членов которого вышли одновременно на беговую дорожку. Большинство этих бегунов бегут с некой средней скоростью, но в клубе есть несколько очень быстрых ребят, которые еще в школьные годы блистали на беговой дорожке, и некоторое число «тюфяков», которые после многих лет, в течение которых они вели малоподвижный образ жизни, пытаются восстановить свою былую форму. Другими словами, мы имеем дело с неким распределением естественных способностей членов клуба бегунов точно так же, как мы имеем дело с неким распределением естественных частот осцилляторов в данной биологической популяции.
Будто перечисленных выше сложностей оказалось недостаточно, нам необходимо определить еще один, последний аспект этой модели: связи между осцилляторами. Уинфри пришлось сделать предположение относительно того, кто кому кричит и кто кого слушает. Здесь наблюдается довольно широкий разброс – все зависит от того, какой биологический пример мы имеем в виду. Возьмем, к примеру, циркадные (околосуточные) ритмы. В этом случае Уинфри предположил возможность существования «стыковочных» клеток, рассредоточенных по всему телу; каждая из таких клеток в ходе суточного цикла выделяет в кровоток определенные химические вещества. Каждая клетка организма омывается смесью выделений всех остальных клеток; по сути, каждая клетка взаимодействует со всеми другими клетками. С другой стороны, сверчки уделяют наибольшее внимание сигналам, поступающим от их непосредственных соседей. А в случае осциллирующих нейронов в мозге такой клубок взаимосвязей оказался невероятно сложным.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.