Рудольф Рэфф - Эмбрионы, гены и эволюция Страница 10
Рудольф Рэфф - Эмбрионы, гены и эволюция читать онлайн бесплатно
В то время как экспериментальная эмбриология перестала заниматься эволюционными проблемами, генетика, напротив, оказалась в самой гуще распрей по проблемам эволюции. С развитием менделевской генетики появилась надежда дать новое объяснение дарвиновских принципов. Экспериментальная парадигма школы Моргана была привлечена к изучению эволюционных проблем, и начался расцвет основанной Фишером, Холдейном и Райтом (R. A. Fisher, J. В. S. Haldane и S. Wright) школы популяционной генетики. Эти ученые видели в законах и соотношениях, установленных Менделем, количественный и математический подход к эволюции. Новая научная школа оперировала группами или популяциями организмов в общем так же, как школа Моргана оперировала отдельными особями.
Генетика развития
Не вызывает сомнений, что генетика развития представляет собой сейчас одну из наиболее активных областей биологии в отношении как теоретических построений, так и эксперимента. Однако в течение трех первых десятилетий XX в., когда и генетика, и биология развития находились в центре внимания ученых, мало кто пытался объединить эти науки. Эмбриологи были поглощены механикой процесса онтогенеза, а генетики занимались выяснением законов, по которым происходит передача признаков. Эти две области биологии развивались в значительной степени разобщенно. Более того, хотя открытия генетиков играли важную роль в развитии неодарвинизма, об экспериментальной эмбриологии этого сказать нельзя.
Такое, казалось бы, странное отсутствие синтеза этих двух наук было вызвано двумя обстоятельствами. Первым, которое уже обсуждалось, было отрицание экспериментальными эмбриологами биогенетического закона, а вторым - отрыв эмбриологии от генетики. Созданная Ру механика развития представляла собой попытку более точно определить механизмы развития, т. е. выявить в онтогенезе причинно-следственные зависимости, которые можно определять экспериментально. Прямой параллелью этой экспериментальной механистической парадигме служила основанная Т. Г. Морганом и развивавшаяся американская школа генетики. Группа Моргана вобрала в себя многие методологические предпосылки эмбриологов, в частности предпочтение отдавалось экспериментальным методам. Однако слияние генетики с эмбриологией задерживалось из-за того, что эмбриологи отказывались признавать менделевскую генетику важным компонентом онтогенеза. Этот отказ был весьма категорично сформулирован в 1928 г. в статье Лилли (F. R. Lillie) «Ген и процесс онтогенеза»:
«В настоящее время генетика постулирует, что на протяжении всей жизни данного индивидуума его гены в любом месте и в любое время всегда одинаковы, если не считать возникновения мутаций или аномальных расхождений хромосом, которые в дальнейшем подчиняются все тем же законам. Важнейшая проблема развития - это именно та дифференцировка в пространстве и во времени на протяжении всей жизни данного индивидуума, которую генетика, по-видимому, явно игнорирует. Успехи генетики и физиологии развития могут привести лишь к более резкому разграничению этих двух областей науки, и все надежды на их объединение (в вейсмановском смысле), по моему мнению, тщетны. Тем, кто желает, чтобы генетика легла в основу физиологии развития, придется объяснить, каким образом некий неизменяющийся комплекс может направлять течение упорядоченного потока развития».
Такое категорическое отрицание было обусловлено тремя причинами. Во-первых, ранние менделисты представляли себе ген как некую частицу, передаваемую потомкам в сперматозоиде и яйце. Именно эти корпускулярные гены, или факторы, обеспечивают развитие индивидуума в процессе онтогенеза. Такое представление, по мнению экспериментальных эмбриологов, попахивало преформизмом - теорией, давно уже впавшей в немилость.
Во-вторых, менделевское направление молчаливо допускало, что при делении соматических клеток компоненты ядра-хромосомы, а следовательно, и гены, точно реплицируются и все клетки получают совершенно идентичные их наборы. Это бросало вызов результатам, полученным экспериментальной эмбриологией. Было хорошо известно, что процесс онтогенеза состоит в последовательном распределении цитоплазмы яйца между клетками, которое сопровождается постепенным сужением ее морфогенетических потенций. Эти два факта, с точки зрения эмбриологов, означали, что гены не могут управлять онтогенезом. Эмбриологи считали, что главная роль принадлежит не ядру, а цитоплазме, о чем свидетельствует приведенная выше цитата из статьи Лилли (Lillie).
И наконец, в-третьих, между менделистами и эмбриологами существовало глубокое изначальное расхождение: менделевскую генетику интересовала главным образом передача признаков из поколения в поколение, тогда как эмбриология занималась развитием признаков в пределах одного поколения. Те и другие исследования достигли быстрых успехов в начале XX в. Школа Моргана добивалась гигантских успехов в изучении передачи признаков; столь же успешно развивались исследования американской (Lillie, Ε. В. Wilson, Conklin, Harrison) и европейской (Spemann, Boveri, Hertwig) групп экспериментальных эмбриологов. Каждое из этих направлений оценивало по достоинству работы другого, но, к сожалению, перекинуть мост через разделявшую их пропасть было невозможно.
Хотя большинство экспериментальных эмбриологов не занимались проблемами эволюции и генетики, было несколько ученых, предпринимавших попытки к их синтезу с эмбриологией. Первым среди них был Дриш (Driesch), пытавшийся примирить расхождение, связанное с противопоставлением друг другу ядра и цитоплазмы. В 1894 г. он построил гипотезу, в которой постулировал, что развитие не обусловливается одним лишь ядром или одной лишь цитоплазмой, а представляет собой результат взаимодействия между ними. Эта гипотеза звучит вполне разумно даже сегодня, спустя почти 90 лет, однако современники Дриша, по-видимому, ее игнорировали.
Вторую попытку синтеза сделал спустя несколько лет, в 1932 г., Морган. Его книга «Эмбриология и генетика» была написана с этой целью. Одни ее главы посвящены эмбриологии, а другие - генетике, однако связь между ними, к сожалению, почти отсутствует.
Вероятно, самую значительную попытку полного синтеза предпринял Рихард Гольдшмидт (Richard Goldschmidt). Он начал свою научную деятельность как анатом; склонность к классической биологии он сохранил на всю жизнь, и этим, возможно, объясняются некоторые проблемы, с которыми столкнулись его идеи. Его интересовала не только передача признаков, но также и физиологические аспекты генетики: каким образом унаследованные факторы реализуются в фенотипе, т.е. как функционируют гены. Эти идеи суммированы в его книге «Физиологическая генетика», опубликованной в 1938 г. Главный вклад в науку этой и других его работ - концепция, согласно которой гены регулируют скорость процессов развития и могут таким образом оказывать сильное влияние на зависящие от них события в течение онтогенеза. Такое постулирование «генов скорости» близко идее Гексли о гетерогоническом росте при аллометрии. Если данный ген способен влиять на скорость роста какой-то определенной структуры, то он будет контролировать размеры этой структуры относительно размеров остального организма. Кроме того, можно представить себе, что гены скорости регулируют абсолютные сроки появления любой данной структуры. Онтогенез слагается из связанных между собой и взаимозависимых процессов; т.е. формирование каждой отдельной структуры зависит как во времени, так и в пространстве от формирования других структур. Таким образом изменения в сроках возникновения одного морфогенетического события могут иметь глубокие последствия, изменяя многие дальнейшие зависящие от него ступени онтогенеза. И Гольдшмидт, и Гексли понимали важность изменений в ходе эволюции сроков морфогенетических процессов, особенно если это касается неотении, наличия рудиментарных органов и формирования крупных специализированных структур. Несмотря на успех выдвинутых им концепций, с одной проблемой Гольдшмидт справиться не мог. Ему трудно было представить себе, как крупное морфологическое изменение, а в особенности эволюция новой структуры, может быть достигнуто путем отбора мутаций, возникающих в генах, которые контролируют мелкие структуры или короткие отрезки онтогенеза.
«Рассмотрим в качестве примера птицу... Возможно, что первоначальный вид был зерноядным, тогда как в наличии имелась свободная ниша для формы, питающейся нектаром. В результате адаптивной радиации возникает такая форма, которая может быть названа новым родом. Но каким же образом такое сложное генетическое изменение, ведущее путем накопления мелких мутационных изменений в строении клюва и языка к возникновению совершенного механизма для высасывания нектара, появляется именно в то время, когда имеются шансы на то, что оно будет подхвачено отбором? При попытке разработать эту проблему во всех деталях очень скоро становится ясно, что для объяснения такого макроэволюционного процесса необходимо помимо принципов неодарвинизма что-то еще».
Жалоба
Напишите нам, и мы в срочном порядке примем меры.