С. Капица - Синергетика и прогнозы будущего Страница 16

Тут можно читать бесплатно С. Капица - Синергетика и прогнозы будущего. Жанр: Научные и научно-популярные книги / Прочая научная литература, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

С. Капица - Синергетика и прогнозы будущего читать онлайн бесплатно

С. Капица - Синергетика и прогнозы будущего - читать книгу онлайн бесплатно, автор С. Капица

Рис. 15. Пример процесса в нелинейной среде, развивающегося в S-режиме с обострением. На рис. представлены профили функции T(x, y) в момент времени t1, t2 и т.д. Видно, что в середине возникает нестационарная диссипативная структура, имеющая постоянную полуширину; a – формирование локализованной диссипативной структуры; б – независимое развитие двух локализованных структур; в – рост структуры с минимальным временем обострения; остальная часть профиля практически "замирает".

Смысл такого решения прост, – в определенной области науки быстро развивается теория, математический аппарат или технология, которая успешно осваивается группой специалистов, работающих в этой области, и не выходит за рамки этого круга. Следуя сложившейся традиции, о таком решении говорят, что оно описывает процесс, развивающийся в S-режиме. Характерный признак этого режима – сохранение полуширины возникающих диссипативных структур.

Другая область параметров<+1. Типичная картина показана на рис.16. Здесь решение также неограниченно возрастает. Однако оно описывает распространяющуюся волну растущей амплитуды. По мере приближения к моменту обострения эта волна охватывает все пространство.

Рис. 16. Пример процесса, идущего в HS-режиме с обострением. В среде возникают волны, амплитуда которых неограниченно растет при ttf .

Такое поведение получило название HS- режима с обострением. В "науковедческой" интерпретации оно может соответствовать очень крупному достижению, меняющему парадигму и влияющему на все сообщество (например, такому, как ньютонова механика), или очень удобной технологии, без которой становится трудно обойтись. Яркий пример – быстрая "экспансия" персональных компьютеров в мировом научном сообществе. Либо такое поведение может соответствовать быстрому и эффективному обмену информацией, при котором "шила в мешке не утаишь", даже если оно невелико.

Исключительно интересным представляется противоположный случай>+1(так называемый LS- режим с обострением). Типичная картина представлена на рис.17. Решение вновь растет в режиме с обострением, оставаясь локализованным, однако его полуширина сокращается. Это соответствует тому, что научные исследования развиваются настолько быстро, что новое понимание оказывается сосредоточенным в рамках одной научной школы. Вспомним Сольвеевские конгрессы и рождение квантовой механики, ключевые результаты в которой были получены несколькими гигантами.

Рис. 17. Пространственно-локализованная диссипативная структура с сокращающейся полушириной. Такие структуры возникают, когда процессы идут в LS-режиме с обострением.

Обратим внимание на парадоксальность того мира, который описывает обсуждаемая модель. Чтобы четче выделить эти необычные свойства, их удобно сравнить с поведением решений классических уравнений и системой реакция-диффузия, предложенной А.Тьюрингом для описания морфогенеза.

Решения классических уравнений Максвелла, описывающих мир электромагнитных явлений и, в частности, распространение электромагнитных волн в простейшем, одномерном случае, имеют вид

=(x - ct).

При этом функция может быть "любой" из очень широкого класса. Среда как бы "запоминает" ее и переносит со скоростью c. Детали и особенности начальных данных не будут "забыты". Время однородно и следующий момент в этом бесконечном ряду ничем не хуже предыдущего. Возникновение "стрелы времени", необратимых процессов весьма непросто объясняется в классической механике.

Решения, представленные на рисунках, имели вид

T=g(t)f, = (--1)/(-1), g(t),

либо стремились к ним, когда время стремилось к моменту обострения tf. Слово "стремились" означает, что при разных начальных данных в среде могут возникнуть одни и те же диссипативные структуры. Несущественные детали будут "забыты" этой "агрессивной" средой. Малые возмущения либо структуры меньшей амплитуды не успеют развиться до момента обострения (см. рис.15). Это типичная ситуация, которую часто описывали историки науки и литературоведы, – в истории наибольшее внимание привлекают "вершины", первые имена. Их влияние на следующую эпоху порой оказывается гораздо больше, чем на современников. История подчас выступает как безжалостный редактор. Кроме того, в обсуждаемой модели время неоднородно. Оно имеет "начало отсчета", а также конец отсчета – время обострения.

Итак, в нашем случае структура с меньшим временем обострения "выигрывает". Аутсайдеры остаются "вечно развивающимися". На первый взгляд кажется, что в этом случае структуры "разного возраста", различного уровня развития, в принципе не могут быть объединены. Однако это не так! В этой диссипативной сильно нелинейной среде существуют законы, по которым простейшие структуры могут быть объединены в более сложные (см. рис.18). Пример объединения двух простых структур в сложную представлен на рис.18. В настоящее время в футурологии, глобальной динамике часто упоминается термин "коэволюция", понимаемый как совместное изменение, взаимодействие в ходе развития. Коэволюция человека и природы, коэволюция культур, регионов с разным уровнем развития, коэволюция технологий и цивилизационных императивов. В этой простейшей среде мы также видим пример коэволюции, позволяющий сложному развиваться согласованно, не распадаясь на простейшие части.

Рис. 18. Характерный пример эволюции сложных нестационарных структур. Такие структуры могут возникать, когда процессы идут в LS-режиме с обострением.

newpage Отдадим себе отчет, что это совпадает с нашим интуитивным представлением о таких сложных системах, как общество, организм, биоценоз, научное сообщество, где целое может существовать только потому, что части объединены сотнями положительных и отрицательных обратных связей.

В простейших случаях можно получить оценку числа возможных структур. В обсуждаемой одномерной модели оно определяется соотношением

N=[S-[[S]/S]]+1,

где S=(-1)/(--1); [S] – целая часть числа S.

Очевидно, при+1, S, т.е. число структур в этих простейших нелинейных средах огромно.

Рис. 19. Типичный вид бифуркационной диаграммы, возникающей в системах типа реакция-диффузия вида (1). Сплошными линиями показаны ветви, на которых лежат устойчивые решения; пунктиром – ветви неустойчивых решений.

Было бы естественно трактовать эволюцию, развитие прогресса как рост разнообразия, усложнения, увеличение числа функциональных единиц. В частности, в другой базовой модели, в системе Тьюринга, имеющий вид (1), усложнение мыслится следующим образом (см. рис.19). Здесь медленное изменение параметра B (времени с начала развития или длины ткани) вместе со случайными возмущениями как бы "ведет" систему по бифуркационной диаграмме. ( Бифуркационной диаграммой называется зависимость одной из величин, характеризующих решение, от параметра. На рис.19 M – это амплитуда решения. Сплошным отмечены устойчивые ветви, пунктиром – неустойчивые.) Выбор из устойчивых ветвей вблизи точки бифуркации происходит под воздействием малых случайных возмущений. Если параметр B – длина области, то с его увеличением (что можно интерпретировать в модели как рост ткани) число максимумов у возникающей диссипативной структуры растет. (Обычно предполагается, что внешний параметр B меняется настолько медленно, что решение успевает достичь состояния, близкого к стационарному, не зависящему от времени.) Можно сказать, что тип структур и переход от простейших к более сложным мы "задаем руками". Камнем преткновения для большинства моделей морфогенеза такого типа является явление регенерации – восстановление ряда органов у животных. Организм как будто бы помнит в этом случае свой "проектный" размер, и восстановление утраченного останавливается именно тогда, когда этот размер достигнут.

Способ управления процессами в такой среде тоже ясен, – чтобы создать в ней среде сложную упорядоченность, вообще говоря, надо менять внешний параметр B. Если же такой возможности нет, то надо посмотреть по бифуркационной диаграмме, какие типы упорядоченности допускает при этом значении система, и управлять начальными данными, чтобы в конце концов возникла желаемая структура. Остальные варианты, о которых мы тоже поговорим, требуют более сложного управления.

Ситуация в модели тепловых структур, которую мы интерпретировали как динамику информированности в неком научном сообществе, принципиально иная. Параметры, определяющие свойства среды ( и) предполагаются фиксированными. И все сложные структуры существуют в одной нелинейной среде, т.е. среда является носителем форм организации. Это близко к представлению идеальных форм Платона, несовершенное воплощение которых мы видим в реальности. Эта идея проводилась в свое время Гейзенбергом, который искал нелинейное уравнение, решения которого позволяли бы предсказывать спектр масс элементарных частиц.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.