Феликс Зигель - Путешествие по недрам планет Страница 17
Феликс Зигель - Путешествие по недрам планет читать онлайн бесплатно
Роль солнечных ритмов в истории Земли весьма заметна. Общая циркуляция атмосферы предопределяет скорость ветров, напряженность водообмена между геосферами, а значит, и характер процессов выветривания. Солнце влияет, очевидно, и на скорость образования осадочных пород. Но тогда геологическим эпохам с повышенной общей циркуляцией атмосферы и гидросферы должны соответствовать мягкие, мало выраженные формы рельефа. Наоборот, в длительные эпохи пониженной активности Солнца земной рельеф должен приобретать контрастность. В холодные эпохи значительные ледовые нагрузки, по-видимому, стимулируют вертикальные движения в земной коре, т. е. активизируют тектоническую деятельность. Наконец, давно уже известно, что в периоды солнечной активности усиливается и вулканизм.
Даже в колебаниях земной оси (в теле планеты) сказывается одиннадцатилетний солнечный цикл. Это, вероятно, объясняется тем, что «активное» Солнце перераспределяет воздушные массы земной атмосферы. Меняется, следовательно, и положение этих масс относительно оси вращения Земли, что вызывает ее незначительные, но все же вполне реальные перемещения и изменяет скорость вращения Земли. Но если изменения солнечной активности сказываются на всей Земле в целом, то тем заметнее должно быть воздействие солнечных ритмов на поверхностную оболочку Земли. Всякие, особенно резкие, колебания в скорости вращения Земли должны вызывать натяжения в земной коре, перемещение ее частей, а это в свою очередь может привести к возникновению трещин, что стимулирует вулканическую деятельность. Так можно (конечно, в самых общих чертах) объяснить связь Солнца с вулканизмом и землетрясениями.
Вывод ясен: понять историю Земли, не учитывая при этом влияния Солнца, вряд ли возможно. Надо, однако, всегда иметь в виду, что воздействие Солнца лишь регулирует или возмущает процессы собственного развития Земли, подчиненного своим геологическим внутренним законам. Солнце вносит лишь некоторые «поправки» в эволюцию Земли, вовсе, конечно, не являясь при этом движущей силой этой эволюции.
Возникновение жизни
В этой книге нет легких тем, но та, к которой мы приступаем, одна из труднейших. До сих пор мы описывали сцену, теперь предстоит вывести на эту сцену действующих лиц.
Как возникла жизнь? В какой момент истории Земли на ее поверхности появилось нечто небывалое — качественно новая и высшая форма материи, обладающая потенциально безграничными способностями совершенствования?
По определению Ф. Энгельса, жизнь есть способ существования белковых тел. Несомненно, что возникновение жизни на Земле подготавливалось всей предшествующей историей нашей планеты[16]. Однако всякий раз (и мы в этом еще неоднократно убедимся), когда медленные количественные изменения в ходе развития материи приводят в конце концов к резкому качественному скачку, сам этот скачок ускользает от ученых. Это, конечно, не роковая и неизбежная неудача, а временная трудность, переживаемая наукой. Она вызвана сложностью «скачков», этих узловых пунктов в развитии материи, событий, пока не познанных, но, безусловно, познаваемых.
Когда-то Ф.М. Достоевский сказал, что природа неравнодушна к красоте. Добавим, что она неравнодушна и к жизни. В недрах звезд, в межзвездном пространстве, там, где заведомо нет ни одного живого существа, непрерывно идет великий синтез тяжелых элементов, простейших, а иногда и сложных органических соединений, этих «полуфабрикатов» жизни. Например, в недрах Солнца водород постепенно «перегорает» в гелий. Красные гигантские звезды, по массе превосходящие Солнце в несколько раз, взрываясь, как сверхновые звезды, сжимаются столь сильно и быстро, что в их атмосферах за счет цепных ядерных реакций и мощных нейтронных потоков синтезируются, по-видимому, тяжелые химические элементы. Во время взрыва они поступают в мировое пространство. Действительно, в межзвездном пространстве астрофизические приборы обнаружили десятки молекул, и среди них — СН, CN, ОН, формальдегид и другие. В атмосферах холодных звезд кроме циана CN присутствуют молекулы СО и С2. Есть CN, С2, СН, NH, ОН и в атмосфере Солнца. Все перечисленные молекулы, а также NH, Н2 и другие встречаются и в атмосферах комет, а атмосферы планет-гигантов Юпитера и Сатурна изобилуют аммиаком NH3 и метаном СН4[17]
Экспериментально показано, что если смесь замороженных водяного пара, метана и аммиака бомбардировать потоком протонов, то в ней образуются сложные органические соединения (мочевина, ацетамид и ацетон). Но эти опыты моделируют условия, господствующие в космосе. Ядра комет — это рыхлые конгломераты из льдов, воды, метана и аммиака. Они непрерывно и весьма длительно бомбардируются космическими лучами — энергичными потоками протонов, нейтронов и других частиц и атомных ядер. Вряд ли можно сомневаться, что в ядрах комет абиогенным путем (т. е. без всякого отношения к чему-либо живому) синтезируются сложные органические вещества. В других опытах смесь водорода, метана, аммиака, водяных паров и некоторых других газов облучалась потоком радиоактивного, ультрафиолетового излучений, подвергалась воздействию медленных электрических разрядов на протяжении недель. В результате таких экспериментов в ней появлялись сложные соединения, аминокислоты, которые входят в состав белков. Не такие ли процессы совершались в первичной атмосфере Земли?
Богаты органикой некоторые метеориты, в особенности так называемые углистые хондриты. Кроме различных битуминозных соединений, углистые хондриты содержат даже цитозин — одно из четырех оснований, носителей «кода жизни» в молекуле ДНК (дезоксирибонуклеиновой кислоты), аминокислоты и другие высокомолекулярные органические соединения. Получается, что в космосе достаточно обильно представлены те органические вещества, из которых (хотя бы в принципе) могло образоваться живое. Но в возникновении жизни на Земле главная роль, по-видимому, принадлежала тем процессам органического синтеза, которые происходили когда-то на поверхности нашей планеты. В составе первичной атмосферы доминирующее положение занимали углекислый газ СO2 и N2. Высокое содержание метана СН4 и аммиака NH3 в истории Земли могло иметь место не более 10—100 тыс. лет, так как они быстро распадались за счет окисления. Свободный кислород в атмосфере нашей планеты был уже на очень раннем этапе ее развития: об этом свидетельствует наличие в древнейших породах оксида железа и сульфатов.
Интересную гипотезу недавно предложил советский исследователь Л.М. Мухин. По его мнению, подводные вулканы играли немалую роль в синтезе сложных органических молекул. При извержениях подобных вулканов выделяются не только пеплы, вулканические бомбы, лавы, но и такие соединения, как CP, СН4, Н2O, СO2, H2S и другие, необходимые для синтеза более сложных органических веществ. Этому синтезу способствуют также повышенные температура и давление в жерлах вулканов, а океан обеспечивает стабильность образовавшихся соединений (формальдегида и др.) — Твердые частицы, выбрасываемые вулканом, способствовали концентрации и полимеризации органики. Как показал Л.М. Мухин, в зоне подводных вулканов могли образовываться альдегиды, углеводы и другие сложные органические вещества, так что подводный вулканизм мог сыграть не последнюю роль в создании «полуфабрикатов» жизни[18].
Дальнейшая история сходна с общепринятой: сложные органические соединения попадали в воды океана, образуя тот «питательный бульон», в котором, вероятно, и возникла жизнь. Этот «бульон» не оставался однородным. Благодаря присущей высокомолекулярным веществам способности к самопроизвольной концентрации, в первичных морях и океанах, а скорее даже в небольших, спокойных и мелких водоемах возникли каплеобразные сгустки, коацерватные капли. Они, конечно, не были простейшими живыми существами. Но они обладали рядом свойств, напоминающих живое. По исследованиям А.И. Опарина и других ученых, коацерватные капли имитируют некоторые жизненные процессы. У них наблюдается своеобразный обмен веществ с внешней средой. Они могут расти, усложняться или, наоборот, деградировать. Среди коацерватных капель наблюдается даже нечто похожее на борьбу за существование, в результате которой остаются победителями капельки более устойчивые, более приспособленные к внешней среде.
Надо заметить, что в опытах американского исследователя 3. Фокса аминокислоты удалось синтезировать без воды из газов в обстановке, имитирующей вулканические условия. Однако дальнейшая эволюция высокомолекулярных полимеров из аминокислот немыслима без водной среды, без образования коацерватных капель или каких-то подобных им структур, например жидких кристаллов. А.И. Опарин указывал, что со временем происходило не только разрастание коацерватов, но и постепенное совершенствование их организации. В итоге это привело к возникновению таких образований, строение которых было уже значительно совершеннее, чем строение динамически устойчивых коацерватных капель, но все еще несравненно проще даже самых простых из известных нам в настоящее время микробов.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.