Всеволод Арабаджи - Загадки простой воды Страница 18
Всеволод Арабаджи - Загадки простой воды читать онлайн бесплатно
Вопрос об образовании шаровой молнии экспериментально еще не изучен. Согласно одной из наиболее рациональных гипотез, шаровая молния может возникнуть за счет осуществляющейся иногда фокусировки ядерно-активных космических частиц в мощном электрическом поле грозовых облаков. Возникающая при этом реакция дробления ядер атмосферного газа ксенона может дать энергию, достаточную для образования шаровой молнии. С этой точки зрения вероятность образования шаровых молний должна иметь связь с мощными вспышками на Солнце, обусловливающими увеличение интенсивности космического излучения у земной поверхности.
При разряде молнии на всем протяжении ее извилистого пути происходит очень быстрое нагревание столба воздуха до нескольких десятков тысяч градусов. И основной канал молнии, и все его многочисленные разветвления становятся источниками ударных волн. Резкий фронт ударной волны по мере удаления от места разряда все более сглаживается, и на некотором расстоянии от источника ударная волна превращается в акустическую (звуковую) волну небольшой амплитуды. В ходе этого Превращения происходит постепенное уменьшение скорости распространения ударной волны вплоть до скорости звука в конечном итоге.
Наибольшая энергия грома приходится на инфразвуковые частоты в диапазоне 0,25...2 Гц и среди них чаще всего на частоту 0,5 Гц. В звуковом участке акустического спектра в диапазоне частот 125...250 Гц находится вторичный максимум, значительно уступающий по энергии инфразвуковому. Инфразвуковой максимум энергии грома соответствует полному времени развития разряда молнии (общая его продолжительность составляет а среднем 1,55 се/с). Слышимая компонента грома представляет собой акустический эффект от последовательности разрядов, составляющих многократный разряд молнии.
Звуки, следующие после главного удара грома, создают впечатление удаляющегося от места наблюдения и постепенно затухающего рокочущего шума; Это – раскаты грома. Они наблюдаются в местности с любым рельефом и образуются ветвящимся и удаляющимся от места наблюдения разрядом молнии. Длительность раскатов грома определяется особенностями развития молнии. В среднем раскаты длятся 24 секунды, крайние отклонения от среднего значения составляют 4 и 100 сек.. Характер звучания грома является существенной особенностью уже начавшейся грозы. Народные приметы утверждают, что длительные раскаты грома являются признаком приближения протяженного массива грозовых облаков. Глухой, продолжительный и умножающийся со временем гром с медленными раскатами характерен для длительной грозы, в то время как короткие и резкие удары с возрастающими по времени промежутками между ними характеризуют кратковременную грозу.
Средняя дальность слышимости грома для летних гроз на континенте составляет 10...15 км. Разница во времени между вспышками молнии и восприятием грома может достигать 90 сек. Гром от близкого разряда молнии производит такое же действие на слух, как выстрел зенитного орудия в 3 м от наблюдателя.
С давних времен в процессе познания грозы человек стремился подчинить ее своей власти. Об этом говорит, например, легенда о Прометее. Овладение грозами было предметом мечтаний ученых и философов средневековья. В последние годы были сделаны попытки «засева» грозовых облаков кристаллами таких веществ, как йодистое серебро, йодистый свинец и твердая углекислота. Можно полагать, что каждое из этих веществ должно способствовать затуханию и даже полному прекращению грозового процесса за счет резкого усиления конденсации водяного пара. Опыты в этом направлении только начаты.
и имеющийся экспериментальный материал еще недостаточен для окончательных выводов.
В 1928...1933 годы на горе Дженеросо в Швейцарии на высоте 80 м над земной поверхностью подвешивалась металлическая решетка. Во время гроз эта решетка собирала достаточный заряд для поддержания в течение 0,01 сек электрической дуги длиной в 4,5 м, что соответствовало силе тока в несколько десятков тысяч ампер и разности потенциалов порядка 1 млн вольт. Вначале предполагалось получаемое на этой установке напряжение использовать для ускорения заряженных частиц в ускорителях. Однако от этой мысли пришлось отказаться ввиду сильной изменчивости электрического состояния грозовых облаков и невозможности пока его регулировать. Попытки использовать протекающий во время гроз в поднятых высоко над земной поверхностью антеннах электрический ток для питания ламп накаливания также пока не дали экономически выгодного эффекта.
Радуга, венцы, гало
В религиозных представлениях народов древности радуге приписывалась роль моста между землей и небом. В греко-римской мифологии известна даже особая богиня радуги – Ирида. Греческие ученые Анаксимен и Анаксагор считали, что радуга возникает за счет отражения Солнца в темном облаке. Аристотель изложил представления о радуге в специальном разделе своей «Метеорологии». Он считал, что радуга возникает благодаря отражению света, но не просто от всего облака, а от его капель.
В 1637 году знаменитый французский философ и ученый Декарт дал математическую теорию радуги, основанную на преломлении света. Впоследствии эта теория была дополнена Ньютоном на основании его опытов по разложению света на цвета с помощью призмы. Дополненная Ньютоном теория Декарта не могла объяснить одновременного существования нескольких радуг, различной их ширины, обязательного отсутствия в цветных полосах некоторых цветов, влияния размеров капель облака на внешний вид явления. Точную теорию радуги на основе представлений о дифракции* света дал в 1836 году английский астроном Д. Эри. Рассматривая пелену дождя как пространственную структуру, обеспечивающую возникновение дифракции, Эри объяснил все особенности радуги. Его теория полностью сохранила свое значение и для нашего времени.
* Дифракция – отклонение световых волн в область геометрической тени при прохождении их через узкие отверстия или вблизи небольших препятствий (размеры отверстий и препятствий должны быть сравнимы с длиной волны).
Радуга – это оптическое явление, возникающее в атмосфере и имеющее вид разноцветной дуги на небесном своде. Наблюдается она в тех случаях, когда солнечные лучи освещают завесу дождя, расположенную на противоположной Солнцу стороне неба. Центр дуги радуги находится в направлении прямой, проходящей через солнечный диск (хотя бы и скрытый от наблюдения тучами) и глаз наблюдателя, т.е. в точке, противоположной Солнцу. Дуга радуги представляет собой часть круга, описанного вокруг этой точки радиусом в 42°30' (в угловом измерении).
Наблюдатель иногда может одновременно увидеть несколько радуг – главную, побочную и вторичные. Главная радуга представляет собой цветную дугу на каплях удаляющейся дождевой пелены и возникает она всегда со стороны неба, противоположной Солнцу. При Солнце на горизонте высота верхнего края главной радуги составляет в угловой мере 42°30'. При подъеме Солнца над горизонтом видимая часть радуги понижается. Когда Солнце достигает высоты 42°30', для наблюдателя на земной поверхности радуга будет не видна, однако если в момент ее исчезновения подняться на башню или мачту корабля, то радугу можно увидеть снова.
При наблюдении с высокой горы или с самолета радуга может иметь вид полной окружности. Еще Аристотель математически доказал, что Солнце, местонахождение наблюдателя и центр радуги находятся на одной прямой. Поэтому чем выше над горизонтом поднимается Солнце, тем ниже опускается центр радуги. В пересеченной местности радугу можно наблюдать и на фоне ландшафта.
Интересно расположение цветов в радуге. Оно всегда постоянно. Красный цвет главной радуги расположен на ее верхнем крае, фиолетовый – на нижнем. Между этими крайними цветами следуют друг за другом остальные цвета в такой же последовательности, как в солнечном спектре. В принципе в радуге никогда не бывают представлены все цвета спектра. Чаще всего в ней отсутствуют или слабо выражены синий, темно-синий и насыщенный чисто красный цвета. С увеличением размеров капель дождя происходит сужение цветных полос радуги, сами же цвета становятся более насыщенными. Преобладание в явлении зеленых тонов обычно указывает на последующий переход к хорошей погоде. Общая картина цветов радуги имеет размытый характер, так как образуется она протяженным источником света.
Над главной радугой располагается побочная с чередованием цветов, обратным главной. Угловая высота верхнего края побочной радуги составляет 53°32'. Кроме того, со стороны фиолетового конца главной радуги иногда можно наблюдать радуги вторичные, преимущественной их окраской является зеленая и розовая. В редких случаях вторичные радуги отмечаются и со стороны фиолетового края побочной радуги. Вторичные радуги более широки в высоких слоях дождевой пелены, где капли дождя имеют меньшие размеры.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.