Айзек Азимов - О времени, пространстве и других вещах Страница 19

Тут можно читать бесплатно Айзек Азимов - О времени, пространстве и других вещах. Жанр: Научные и научно-популярные книги / Прочая научная литература, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Айзек Азимов - О времени, пространстве и других вещах читать онлайн бесплатно

Айзек Азимов - О времени, пространстве и других вещах - читать книгу онлайн бесплатно, автор Айзек Азимов

Тогда возникает закономерный вопрос: если Луна не является ни настоящим спутником, ни захваченным, что же это такое? Вероятно, вы удивитесь, но ответ у меня есть. Для наглядности давайте вернемся к моим вычислениям «коэффициента перетягивания каната». Для одного спутника я этот коэффициент не вычислил. Давайте сделаем это сейчас.

Среднее расстояние от Земли до Луны — 237 000 миль, а среднее расстояние от Луны до Солнца — 93 000 000 миль. Отношение расстояний — 392. Если это число возвести в квадрат, получится 154 000. Отношение массы Земли к массе Солнца было приведено ранее в этой главе и составляет 0,0000030. Умножив это число на 154 000, получим искомый коэффициент — 0,46.

Иными словами, Луна занимает среди остальных спутников Солнечной системы совершенно особое положение. Она уникальна тем, что ее родная планета — Земля — проиграла соревнование с Солнцем по «перетягиванию каната». Солнце притягивает Луну в два раза сильнее, чем Земля.

Таким образом, мы можем рассматривать Луну не как настоящий или захваченный в гравитационное поле спутник, а как самостоятельную планету, которая движется вокруг Солнца «в ногу» с Землей. Если вы изобразите в масштабе орбиты Земли и Луны вокруг Солнца, то увидите, что лунная орбита постоянно вогнута в сторону Солнца. Она всегда «падает» к Солнцу. Все остальные спутники, причем без единого исключения, «падают» в противоположную сторону.

Не забывайте, что Луна вращается вокруг Земли вовсе не в плоскости земного экватора, как этого следовало ожидать от спутника. Плоскость ее орбиты подходит достаточно близко к эклиптике, то есть к плоскости, в которой планеты обычно вращаются вокруг Солнца. Именно так и должна вести себя планета!

Представляется возможным, что существует некое промежуточное состояние между тяжелой планетой, расположенной далеко от Солнца и представляющей собой ядро с многочисленными спутниками вокруг, и маленькой планетой недалеко от Солнца, которая также является ядром но уже без спутников. Разве не могут создаться условия, при которых произойдет сгущение вещества, и из двух ядер образуется, так сказать, двойная планета?

Возможно, Земля лишь подошла к границе допустимой массы и расстояния, она оказалась немного меньше и чуть ближе, чем нужно. Быть может, если бы мы были немного иначе расположены, две половинки двойной планеты оказались бы больше похожи? На обеих могла быть атмосфера, океаны, а главное — жизнь. Нельзя исключить, что в иных звездных системах двойные планеты — обычное дело.

Как стыдно, если мы прозевали такое…

А быть может (кто знает), какое счастье!

Глава 8

Первая и последняя

В начальных классах мне очень нравилось раскачиваться на кольцах в спортзале (тогда я был легче и отчаяннее). Как-то раз я почувствовал усталость (это упражнение требует немалых физических усилий) и выпустил кольца из рук, раскачавшись очень сильно.

Я решил (до сих пор помню это совершенно отчетливо), что мой полет будет продолжаться по полуокружности вверх, пока сила тяжести вступит в свои права, после чего я легко приземлюсь на ноги, совершив красивое entrechat.

Действительность оказалась намного прозаичнее. Я некоторое время летел по касательной к описываемой полуокружности в той точке, где отпустил кольца, после чего тяжело и неуклюже шлепнулся на бок.

Слегка очухавшись, я встал[6] и, пошатываясь, вышел из зала. За всю жизнь мне не пришлось пережить более тяжелого падения.

Не могу не отметить, что этот случай дал мне изрядную пищу для ума. Впоследствии я много размышлял о проблемах инерции, обдумывал способы сложения векторов и даже вывел некоторые закономерности дифференциального исчисления.

Откровенно говоря, после этого падения я впервые осознал тот факт, что сила тяжести может быть очень опасной и, если ее ежеминутно не контролировать, в прямом смысле способна сразить тебя наповал.

С этой силой сталкивается каждое человеческое существо, причем очень рано. Ребенок, делающий первые шаги в возрасте года или около того, непременно спотыкается и падает, — так он начинает познавать действие силы тяжести на практике.

Мне рассказывали, что дети обладают инстинктивным страхом перед падением, причем он заложен в них с доисторических времен, когда наши далекие предки — человекообразные обезьяны — жили на деревьях и боялись с них свалиться.

Тогда можно сказать, что гравитация — это первая сила, с которой сталкивается любое человеческое существо. Мы никогда не забываем о ее существовании, ведь при каждом шаге, вздохе или ударе сердца нам приходится ее преодолевать. И для этого мы никогда не прекращаем прилагать определенные усилия.

Немного утешает то, что эта мощная сила является нашей защитницей. Она привязывает нас к поверхности планеты и не позволяет улететь в космос. Также она удерживает на Земле воздух и воду, которыми мы постоянно пользуемся. Кстати, она держит и саму Землю на орбите вокруг Солнца, в результате чего мы получаем необходимые нам свет и тепло.

Людям часто кажется удивительным, что гравитация — отнюдь не самая мощная сила во Вселенной. Сравним ее с электромагнитной силой, которая позволяет магниту притягивать железо, а протону — электрон. (Электромагнитная сила может не только притягивать, но и отталкивать, что недоступно для гравитации. Но не будем пока об этом.)

Каким образом можно провести сравнение относительных величин электромагнитной и гравитационной силы?

Представим себе два объекта, которые остались единственными во Вселенной. Гравитационная сила, действующая между ними, может быть найдена по следующей формуле (ее вывел еще Ньютон):

Fg = gmm′/d2 (формула 1).

Здесь Fg — гравитационная сила, действующая между двумя объектами, m, m′ — масса объектов, d — расстояние между ними, a g — универсальная гравитационная постоянная.

Особое внимание следует обратить на единицы измерения. Если измерить массу в граммах, расстояние в сантиметрах, a g в более сложных единицах, гравитационную силу мы получим в динах. (Еще до конца этой главы мы откажемся от этой единицы измерения силы, поэтому нет никакой необходимости подробно объяснять, что это такое. Объяснение вы найдете в главе 13.)

Итак, перейдем к делу. Величина g является постоянной (насколько нам это известно) для всей Вселенной. В тех единицах, которыми я в настоящее время пользуюсь, это 6,67 × 10-8 = 0,0000000667.

Теперь давайте представим, что мы рассматриваем объекты с одинаковой массой. Это означает, что m = m′, а mm′ = mm = m2. Более того, давайте предположим, что расстояние между центрами частиц составляет ровно 1 см. В этом случае d = 1, d2 = 1. Формула 1 приобретает следующий вид:

Fg = 0,0000000667 m2 (формула 2).

Теперь можно перейти к электромагнитной силе, которую мы обозначим Fe.

Ровно через 100 лет после открытия Ньютоном закона тяготения французский физик Шарль Августин де Кулон вывел очень похожую формулу для электромагнитной силы, действующей между двумя заряженными объектами.

Теперь предположим, что два объекта, для которых мы рассчитываем гравитационные силы, также несут электрический заряд, так что на них действует еще и электромагнитная сила. Дабы убедиться в том, что электромагнитная сила является притягивающей и сравнимой с гравитационной силой притяжения, предположим, что один объект несет положительный электрический заряд, а второй — отрицательный. (Принцип сохранится, даже если мы будем использовать одноименные заряды и измерять силу электромагнитного отталкивания, но зачем отвлекать внимание?)

Кулон доказал, что электромагнитная сила, действующая между двумя объектами, выражается формулой:

Fe = qq′/d2 (формула 3),

где q, q′ — заряды объектов, а d — расстояние между ними.

Если предположить, что расстояние измеряется в сантиметрах, а электрические заряды в электростатических единицах, нет необходимости вводить в формулу аналог гравитационной постоянной при условии, что объекты находятся в вакууме. А так как я предположил, что рассматриваемые объекты одни во Вселенной, между ними может быть только вакуум.

При использовании упомянутых мною выше единиц электромагнитная сила выражается в динах.

Давайте упростим вопрос и предположим, что величина положительного электрического заряда одного из объектов равна величине отрицательного электрического заряда другого объекта, то есть q = q′. (Для наглядности можно указать у одного из них знак «минус». Тогда можно утверждать, что, если величина электромагнитной силы отрицательна, объекты притягиваются, а если положительна — отталкиваются. Однако для наших целей это не является важным. Поскольку электромагнитное притяжение и отталкивание являются проявлениями одной и той же силы, в дальнейшем мы будем игнорировать знаки.) Таким образом, q = q′, a qq′ = qq = q2. Допустим, расстояние между центрами зарядов ровно 1 см, тогда d2 = 1, а формула 3 приобретает вид:

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.