В начале было ничто. Про время, пространство, скорость и другие константы физики - Питер Эткинс Страница 19
В начале было ничто. Про время, пространство, скорость и другие константы физики - Питер Эткинс читать онлайн бесплатно
Чтобы закруглиться с рассказом о температурных шкалах, добавим еще, что есть, конечно, и шкала, которая начинается с абсолютного нуля. Она называется термодинамической шкалой температур, или просто абсолютной шкалой. Если градации этой шкалы имеют шаг, равный градусам шкалы Цельсия, тогда она называется шкалой Кельвина, в честь Уильяма Томсона, барона Кельвина Ларгского (1824–1907), пионера термодинамики[28]. Если же градации абсолютной шкалы соответствуют градусам Фаренгейта, тогда термодинамическую температурную шкалу называют шкалой Ранкина, по имени шотландского инженера Джона Ранкина (1820–1872), ныне (хотя в его время это было вовсе не так) значительно менее известного теоретика паровых машин и сочинителя комических песенок. Насколько я знаю, сейчас почти никто не пользуется шкалой Ранкина: ну, разве что такие инженеры еще найдутся в Америке, где в повседневной жизни шкала Фаренгейта упрямо не желает уступать победу Цельсию. Напомним для полной ясности, что абсолютный нуль лежит на отметках –273,15 °C или –459,67 °F.
Закончив наш экскурс в сферу практики, я должен теперь рассмотреть вопрос о том, как именно глубокая концепция температуры вошла в науку, в частности в термодинамику. Как могла температура быть наблюдаемой физической характеристикой во времена, когда ученые еще не осознавали реальность молекул и не имели ни малейшего представления о дискретности энергетических уровней? Другими словами, что собой представляла температура до Больцмана?
Формально температура вошла в термодинамику «задним числом». Надо сказать, что одна из особенностей термодинамики заключается в том, что каждый из ее законов (они часто называются «начала») обычно (а вот и еще одно слово-уловка) вводит в обиход какую-то новую характеристику, связанную с энергией. Так, первое начало термодинамики вводит величину, которая, собственно говоря, и является энергией; второе начало (мы рассмотрим его в главе 5) представляет характеристику, называемую энтропией. Оба эти закона разнообразными способами связаны с концепцией температуры. Создатели термодинамики постепенно поняли, что, хотя они достаточно строго сформулировали первый и второй ее законы и таким образом дали определения энергии и энтропии, само понятие температуры осталось без определения и не было введено каким-либо законом. Необходимо было сформулировать какой-то новый закон, более фундаментальный, чем первое и второе начала, – закон, который формализовал бы определение температуры. И, так как первое и второе начала уже заняли свои места, отцам-основателям термодинамики ничего не оставалось, как, стиснув зубы, назвать этот новый закон, логически предшествовавший первому и второму, «нулевым началом термодинамики». (Я не знаю никакой другой области науки, в которой потребовалось бы задним числом вводить подобный «нулевой закон»: разве что можно поискать нечто несформулированное, что затаилось в недрах ньютоновской классической механики.) Коротко говоря, нулевое начало является формальным определением температуры, и теперь мне придется объяснить вам его с виду довольно банальное содержание и рассказать, как этот новый закон выполнил свое назначение.
Представьте, что у вас есть три объекта, которые я назову A (к примеру кусок железа), B (ведро с водой) и T (а вы думали, C? облом…). Как вы сейчас поймете, у «термодинамистов», то есть тех, кто занимается термодинамикой, есть одна довольно странная черта: они приходят в настоящий восторг, когда отмечают, что ничего не происходит. Может быть, вы уже обратили на это внимание, когда мы обсуждали сохранение энергии в главе 2: они просто торчали (на свой абстрактный лад), когда заметили, что полная энергия Вселенной не изменяется. Вот это состояние эйфории и вылилось в первый закон термодинамики, который представляет собой просто конкретизацию закона сохранения энергии. Вот, к вящему их восторгу, еще один сценарий: допустим, вы привели A и T в соприкосновение и отметили, что ничего не произошло. Теперь допустим, что, независимо от первого вашего действия, вы привели в соприкосновение B и T, и вновь ничего не случилось. Так вот, нулевое начало термодинамики говорит, что если теперь вы приведете в соприкосновение друг с другом A и B (то есть поместите кусок железа в ведро с водой), ничего не произойдет. Это наблюдение имеет универсальный смысл: какова бы ни была природа A и B, если ничего не происходит при контакте каждого из них по отдельности с T, то ничего не произойдет и при контакте A с B. У «термодинамиста» это наблюдение вызывает почти непреодолимый оргазм и наполняет все его существо безграничным счастьем.
Надеюсь, что вы замечаете: объект T играет роль термометра, а вся описанная процедура может быть представлена как измерение температуры. То есть, когда A входит в соприкосновение с T и ничего не происходит (например, длина столбика ртути внутри стеклянной трубочки в составе объекта T не меняется), это значит, что температуру объекта A можно поставить в соответствие с длиной столбика ртути. Когда B входит в соприкосновение с T и ничего не происходит, это значит, что объект B имеет температуру, зарегистрированную при помощи T, и она такая же, как у A. Следовательно, A и B имеют одинаковую температуру, и мы можем быть абсолютно уверены, что, если они войдут в соприкосновение друг с другом, ничего не
Жалоба
Напишите нам, и мы в срочном порядке примем меры.