Леонид Ксанфомалити - ПЛАНЕТНЫЕ СИСТЕМЫ ЗВЕЗД Страница 2

Тут можно читать бесплатно Леонид Ксанфомалити - ПЛАНЕТНЫЕ СИСТЕМЫ ЗВЕЗД. Жанр: Научные и научно-популярные книги / Прочая научная литература, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Леонид Ксанфомалити - ПЛАНЕТНЫЕ СИСТЕМЫ ЗВЕЗД читать онлайн бесплатно

Леонид Ксанфомалити - ПЛАНЕТНЫЕ СИСТЕМЫ ЗВЕЗД - читать книгу онлайн бесплатно, автор Леонид Ксанфомалити

Из данных Ван де Кампа следовало, что возмущения в движении звезды вызывает планета с массой Юпитера (или больше) и примерно с его же орбитой. В дальнейшем де Камп говорил уже о двух планетах, с периодами 12 и 26 лет. Популярность исследований де Кампа росла, чему способствовало и то, что он умел хорошо владеть аудиторией. Однако некоторые скептики относились к его данным недоверчиво.

Н. Вегман, один из близких коллег де Кампа, провел независимые измерения, колебаний в положении звезды Барнарда не обнаружил, но публиковать свои результаты не стал. В 1971 году Д. Гейтвуду, который тогда был аспирантом Аллеганской обсерватории (США), предложили исследовать движения звезды Барнарда в качестве диссертационной темы. Компьютеры тогда только входили в астрономическую практику, но Гейтвуду удалось разработать новый астрометрический прибор – многоканальный компьютеризированный фотометр, который в значительной мере исключал возможные ошибки измерений. Для надежности измерения проводились независимо в двух обсерваториях. Когда накопилось достаточное количество снимков, запустили программу их обработки. Вокруг громоздкого грохочущего принтера собрались все участники работы. "Это был странный случай, все произошло так быстро, за минуты, – рассказывал Гейтвуд. – Мы смотрели на выползавшую из принтера распечатку, причем не знали, какая из звезд – Барнарда. И вот появилась звезда с возмущениями около 30 тысячных секунды дуги. Я оживился. Бог мой, вот она! Мы нашли! Фантастика! Мы столпились, разглядывая, обсуждая, и тогда… тогда я увидел номер звезды. Это была не звезда Барнарда! Это была двойная звезда с возмущающим компаньоном". Далее появился совершенно ровный, без какой-либо волнистости, след звезды Барнарда.

Де Камп до конца своих дней настаивал на существовании планет у звезды Барнарда. Он умер в 1995 году, в год, странно совпавший с открытием первой подлинной экзопланеты у звезды 51Peg.

Наряду с астрометрией исследователи рассматривали и другие возможные методы поиска планет. В обзорах 80-х годов ХХ столетия приводились вполне обоснованные оценки возможностей методов лучевых скоростей (о нем ниже) и наблюдений внесолнечных планетных тел в оптическом и в инфракрасном диапазонах.

Метод прямой фотометрической регистрации экзопланет по отраженному ими свету в 1970 – 1990-х годах обсуждали многие исследователи. Автор в одной из своих работ 1986 года рассматривал выполнимость такой регистрации планет, исходя из самых-самых предельных технических возможностей. Принималось, что планетная система подобна Солнечной, наблюдаемой с расстояния 5 пк. Отношение света, отраженного планетой, к свету Солнца очень мало и составляет для Венеры и Юпитера одну миллиардную, а для Земли еще в четыре раза меньше. Идеальная оптическая система космического телескопа диаметром 2,6 метра с идеальным приемником могла бы создать фототок в 10-20 фотоэлектронов в секунду от света Юпитера. В принципе такой ток можно измерить, но шум регистрации фототока от самой звезды превышает эти значения в 10 тысяч раз, поэтому система должна быть очень сложной. Расчеты показывали, что задача требует длительности экспозиции не менее 10 часов.

Технические сложности метода прямой регистрации были причиной скептического к нему отношения. Теоретически большими преимуществами обладает радиометрический метод, который отличается от фотометрического только диапазоном длин волн. Фокус здесь заключается в использовании особенностей планковской кривой излучения абсолютно черного тела. Регистрируется не отраженный свет, а собственное инфракрасное излучение планеты в диапазоне 25-50 мкм. Длина волны выбирается правее максимума планковской кривой для планеты, где выигрыш получается наибольшим. К тому же, в отличие от оптической фотометрии, тепловое излучение исходит от всей поверхности планеты, а не только от освещенной стороны. С учетом свойств уравнения Планка отношение интенсивности инфракрасного излучения Юпитера и Солнца получается в 150 тысяч раз больше отношения их яркостей в оптическом диапазоне. Но реальный выигрыш, по техническим причинам, не превышает 100 раз.

Эффективность метода прямой регистрации (в оптическом диапазоне) все-таки была доказана наблюдениями планеты у так называемого коричневого карлика 2M1207. Это особый случай, о котором рассказывается ниже.

Распределение интенсивности излучения в спектре абсолютно черного тела. Если в видимой области отношение яркости звезды и планеты достигает десятков миллиардов, то в области Рэлея-Джинса - всего около ста.

Белый объект справа - это «коричневый» (инфракрасный) карлик 2М1207. По-видимому, у этой карликовой звезды есть планета (слева на снимке). Масса планеты - примерно пять масс Юпитера; она находится на расстоянии 55 а.е. - в 10 раз дальше от звезды, чем Юпитер от Солнца. (Снимок получен в Южно-Европейской обсерватории Паранал (Чили) с помощью так называемой адаптивной оптики 8-метрового телескопа.)

ПЛАНЕТНАЯ СИСТЕМА У НЕЙТРОННОЙ ЗВЕЗДЫ PSR B1257+12

Вопреки ожиданиям первая внесолнечная планетная система была обнаружена не у нормальной звезды, а у пульсара (нейтронной звезды). В 1991 году радиотелескоп Аресибо (Пуэрто-Рико, США) был остановлен на частичный ремонт. 300-метровая параболическая антенна Аресибо неподвижна, поэтому основной режим работы этого радиотелескопа – пассажный, то есть излучение радиоисточ ников регистрируется, когда благодаря вращению Земли они проходят через его неподвижную диаграмму направленности. А. Вольцшан использовал остановку плановых работ на радиотелескопе для поиска пульсаров, расположенных высоко над плоскостью Галактики. Вскоре ему удалось обнаружить слабый пульсар PSR B1257+12, импульсы которого повторяются каждые 6,2 миллисекунды. Пульсар далекий, он находится на расстоянии 1300 световых лет. (Пульсары – это быстровращающиеся нейтронные звезды с двумя узкими лучами, как у прожектора маяка. Они удобны для исследования межзвездного пространства, и существуют специальные математические модели, которые позволяют получить сведения о межзвездной среде именно путем обработки данных об излучении пульсара.) Но с обработкой данных PSR B1257+12 возникли проблемы. Вскоре, чтобы подтвердить наблюдения Вольцшана, Д. Фрейл в радиоастрономической обсерватории Сокорро в Нью-Мексико провел независимые измерения, но получил такие же результаты.

Немного раньше А. Лин выступил в печати с сообщением об открытии планеты у другого пульсара, PSR B1829-10. Его статья в журнале "Nature" появилась 25 июля 1991 года вместе с вынесенным на обложку ярким заголовком: "Первая планета вне нашей Солнечной системы". У Лина тоже были проблемы с обработкой данных, но, когда он включил в модель пульсара периодическое воздействие, создаваемое гипотетической массивной планетой, задача была решена. Период планеты, однако, оказался странно равным точно половине земного года. Впрочем, мало ли какие бывают совпадения. Вольцшан и Фрейл тоже включили в обработку такое же периодическое воздействие от массивной планеты. Однако осенью того же года на конференции, где были представлены доклады Лина и Вольцшана, Лин мужественно признался, что с новой программой обработки присутствие планеты у пульсара PSR B1829-10 не подтвердилось. Ошибку вызывало, по-видимому, годичное движение Земли.

В 1993 году Вольцшан объявил, что у пульсара PSR B1257+12 оказались три планеты, которые удалены от него в том же отношении 0,39/0,72/1, что и расстояния от Солнца Меркурия, Венеры и Земли. Массы планет довольно значительны: 0,2, 4,3 и 3,6 земной, а периоды обращения составляют 25, 67 и 98 суток (в дальнейшем заключение о существовании первой планеты оспаривалось).

По-видимому, планеты у пульсара представляют собой весьма экзотические образования. Они подвержены действию интенсивных потоков электронов, позитронов и гамма-излучения, периодически падающих на планеты с указанным периодом (то есть с частотой 160 Гц). После первых же публикаций возник вопрос: откуда там взялись планеты? Нейтронная звезда – продукт взрыва обычной звезды в конце ее жизни. Предположение, что планеты у звезды когда-то существовали и сохранились после ее взрыва как сверхновой, не проходит по нескольким причинам. После взрыва сверхновой планеты должны были бы оказаться внутри газовых оболочек звезды. Но даже если бы они и сохранились, пусть в обожженном виде, удержаться на своих орбитах они бы не смогли: после взрыва масса звезды и ее тяготение резко уменьшаются, в результате сохраняющегося момента орбиты планет катастрофически увеличиваются и планеты покидают звезду.

Воможное объяснение природы планет пульсара PSR B1257+12 связано именно с его быстрым врашением, хотя он должен быть достаточно старым (и медленным). Предполагается, что рядом с ним существовала другая звезда, вещество которой постепенно перетекало к пульсару, ускоряя его вращение, а остатки могли конденсироваться в планеты. Ныне такой звезды нет.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.