Мозг и его потребности 2.0. От питания до признания - Вячеслав Дубынин Страница 2
Мозг и его потребности 2.0. От питания до признания - Вячеслав Дубынин читать онлайн бесплатно
Компьютерному блоку питания в нашем мозге соответствуют центры сна и бодрствования. И хотя сам по себе этот блок не очень сложный, но если он сломается, компьютер работать не будет. Человек же при повреждении этих небольших по объему центров впадает в коматозное состояние.
Рис. 1.1. Вверху слева: нейрон; вверху справа: синапс. Внизу: пример нейронной сети
Огромную роль в работе нашего мозга играют центры потребностей. Современные компьютеры тоже умеют заявлять о своих «нуждах»: «Кончается заряд аккумулятора, подключи меня к сети», «Пришла почта, посмотри», «Не пора ли обновить антивирусную программу?». Можно легко представить ситуацию, когда, услышав, как хозяин вошел в квартиру, ваш ноутбук включается и говорит: «Не хочешь ли поиграть в новую стрелялку?» или «Я подобрал интересный фильм под твой запрос». То есть что делает компьютер? Ведет себя активно, навязывая пользователю те или иные реакции. «Нет, ты не можешь проигнорировать, нажми кнопку “Да” или кнопку “Нет”». Так же, как человек не может проигнорировать, например, сильное чувство голода, – мозг требует решения.
Кроме того, и в компьютере, и в мозге есть устройства вывода – блоки, направленные вовне. В ПК это принтер или дисплей, а в нашем организме – мышцы и внутренние органы. Когда мозг что-то делает, в том числе ищет пути удовлетворения той или иной потребности, мы шевелим руками и ногами. А наше сердце, кишечник, почки, легкие работают для того, чтобы все эти движения были обеспечены кислородом, глюкозой и прочим. Все это работает, чтобы мы жили долго и по возможности счастливо.
Если копнуть чуть глубже, мы увидим, что компьютер состоит из микрочипов, а мозг – из нейронов и расположенных между ними вспомогательных (глиальных) клеток. Нейроны (те самые нервные клетки, о порче которых мы так часто вспоминаем в стрессах) и микрочипы – это примерно один уровень организации. Поговорим об этом подробнее.
Нервная клетка (рис. 1.1, слева) – это ветвистое образование, у которого есть центральная часть, ее называют сомой. В этой соме находится ядро и различные органоиды.
От центральной части отходят два типа отростков: дендриты и аксоны (дендро – «ветвь», аксо – «ось»). Дендриты – сильно ветвящиеся отростки, которых обычно несколько, они находятся на входе в нейрон и воспринимают информацию. Это такой «колл-центр», который принимает входящие звонки из разных мест. Аксон же у нейрона всегда один, он проводит сигналы к следующим клеткам – это самые важные «исходящие звонки». В итоге нейроны образуют цепи и сети, по которым передается информация.
Наша память, эмоции, то, что мы воспринимаем во внешней среде, сигналы, которые направляются к мышцам и внутренним органам, – все это существует в форме электрических импульсов, распространяющихся по нервным сетям.
Когда мы смотрим на первый уровень работы мозга, то видим, что мозг – это электрическая машина, и здесь сходство с компьютером совершенно потрясающее.
Мы знаем, что в компьютере существует двоичная система, когда с помощью ступенек тока кодируется все, что этот самый компьютер делает, – по сути, вся информация представлена в виде чисел 1 (верхняя ступенька) и 0 (нижняя ступенька). Оказывается, и в нашем мозге используется очень похожий принцип, только ступеньки эти не прямоугольные, как в компьютере, а, скорее, треугольные. Они называются потенциалами действия и бегут, распространяются по аксонам и дендритам. Эти импульсы кодируют чувства, сенсорные переживания, мысли, будущие движения. Ступеньки тока примерно одинаковы во всех отделах мозга, и важно только место, где они возникают. Если подключиться к правильному участку и подавать подобные импульсы, можно вызывать у человека, например, эйфорию, галлюцинацию или заставить его пошевелить пальцем. Этим, собственно, и занимаются специалисты, которые протезируют пациентам конечности или органы чувств.
Если мы начнем сравнивать мозг с компьютером на более глубоком уровне, то обнаружим весьма обидную картину: в вычислительной машине упомянутые ступеньки тока генерируются по несколько миллиардов за секунду (гигагерцы)! А рабочая частота большинства нейронов нашего мозга – примерно 50–100 Гц. Получается, что в нервной системе по каждому аксону за единицу времени передается очень мало информации. Вдобавок происходит это чрезвычайно медленно. Действительно обидно за свой мозг, не так ли? Сейчас будет еще больнее. Как говорят нам физики, в компьютерах сигналы распространяются с быстротой, составляющей примерно половину от скорости света. А вот наш максимум – 100–120 м/с. Чтобы было нагляднее, переведем в километры в час: 360–430 км/ч, и это очень мало. Для сравнения: средняя скорость полета условного «Боинга» – 800–900 км/ч.
Например, мы доставали из духовки готовый пирог и случайно задели горячую форму. У такого большого существа, как человек, пока импульс от кожи пальца добежит до спинного мозга, переработается там и вернется обратно, появляется явная задержка во времени примерно 0,3 секунды. В комплекте к вкусному пирогу мы ожидаемо получаем ожог. А если бы у нас по нервам информация шла со скоростью света, мы бы вообще никогда не обжигались. Реакция наша была бы столь быстрой, что в момент прикосновения пальца к горячей форме рука бы сразу же отдергивалась. Но скорость проведения сигналов по нервам мала (а длительность обработки боли в спинном мозге велика), и в итоге кожа повреждается – спасибо и на том, что не превращается в уголек.
Эволюция честно пыталась создать максимально «быстрые» аксоны. Но смогла только такие. Конечно, это тоже победа, ведь скорость проведения импульсов у примитивных беспозвоночных не превышает 1 м/с. Этим ребятам повезло гораздо меньше.
Мозг как химическая конструкция
Если копнуть еще глубже, мы увидим, что мозг – не только электрическая машина, но и конструкция, основанная на химических реакциях. И огромную роль в ней играют синапсы – контакты или соединения между нервными клетками. Как правило, аксоны нейрона дотягиваются до следующей клетки (нервной, мышечной, железистой), формируя такие контакты.
Пока информация находится внутри нейрона, она передается в электрической форме в виде импульсов. Но когда приходит время двигаться дальше, к следующей клетке, это происходит уже в химической форме в виде особых веществ – нейромедиаторов. Если проще, нейромедиаторы – это такие почтовые курьеры, которые носят «документы» с информацией из одной клетки в другую (то есть молекулы-посредники).
Получается чередование: в нейроне – электричество, между нейронами – химия. Потом опять электричество и опять химия. Эта постоянная смена способов передачи информации – важный базовый принцип работы мозга.
Именно на химическом уровне нам гораздо легче влиять на работу нервной системы. Если мы знаем, какие вещества выделяются в синапсах (а науке это уже неплохо известно), мы можем синтезировать и вводить в организм молекулы, похожие на них, чтобы усилить действие или, наоборот, помешать им работать. Этим мы серьезно воздействуем на функции
Жалоба
Напишите нам, и мы в срочном порядке примем меры.