П.И.Бакулин, Э.В.Кононович, В.И. Мороз - Курс общей астрономии Страница 25

Тут можно читать бесплатно П.И.Бакулин, Э.В.Кононович, В.И. Мороз - Курс общей астрономии. Жанр: Научные и научно-популярные книги / Прочая научная литература, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

П.И.Бакулин, Э.В.Кононович, В.И. Мороз - Курс общей астрономии читать онлайн бесплатно

П.И.Бакулин, Э.В.Кононович, В.И. Мороз - Курс общей астрономии - читать книгу онлайн бесплатно, автор П.И.Бакулин

– миллионов километров. С другой стороны, белые карлики, масса которых чуть меньше солнечной, по своим размерам примерно в сто раз меньше Солнца и протяженность их атмосфер в десять тысяч раз меньше солнечной и составляет около десяти метров (одна миллионная доля радиуса!) С протяженностями атмосфер тесно связан вопрос о наличии конвективных оболочек у звезд. Как мы видели, у Солнца имеется подфотосферная конвективная зона. При не слишком высоких температурах одно лучеиспускание без конвекции не может перенести всей той энергии, которая должна выйти из недр звезды и попасть в атмосферу, чтобы высветиться в пространство. Кроме того, в «холодной» атмосфере возникновение конвекции облегчается тем, что она способна эффективнее переносить энергию: поднимающийся из глубоких слоев элемент конвенкции содержит ионизованный водород, который в верхних, холодных слоях отдает не только тепловую, но и, становясь нейтральным, ионизационную энергию. Поэтому у звезд более холодных, чем Солнце, водородные конвективные оболочки еще протяженнее, а сама конвекция сильнее. С другой стороны, у звезд горячее Солнца, у которых водород ионизован всюду в атмосфере, возникновение конвекции затруднено и конвективные зоны не возникают, поскольку лучеиспускание обеспечивает необходимый перенос энергии. Теперь рассмотрим плотности атмосфер различных звезд. Для определения плотности r солнечной фотосферы мы воспользовались в § 121 тем соображением, что количество вещества, содержащееся в слое атмосферы толщиной Н, должно обладать заметной непрозрачностью (иметь оптическую толщину t « 1). Иными словами, Если бы непрозрачность вещества во внешних слоях у всех звезд была одинакова, то плотности были бы обратно пропорциональны протяженностям Н. Но непрозрачность вещества сильно зависит от температуры и, что особенно важно, от давления, определяемого силой тяжести. Чем больше сила тяжести, а следовательно, и давление, тем сильнее непрозрачность. Однако мы только что видели, что протяженность как раз обратно пропорциональна силе тяжести. Поэтому произведение k Н, входящее в формулу (9.16), должно меняться мало. Это объясняет, почему плотности звездных фотосфер различаются между собой значительно меньше, чем их протяженности. Действительно, фотосферы гигантов и сверхгигантов всего лишь раз в 10 разреженнее солнечной, в то время как наружные слои белых карликов только в 10 раз плотнее. Наиболее разреженными являются атмосферы гигантов и «холодных» сверхгигантов. Их фотосферы в сотни тысяч раз разреженнее солнечной, что соответствует условиям в верхних слоях солнечной хромосферы. Таким образом, в этом разделе мы рассмотрели важнейшие особенности и строение нормальных звезд, занимающих различное положение на диаграмме Герцшпрунга – Рессела. В качестве итога в табл. 12 приведены характеристики наиболее типичных звезд. Три первые из них, включая Солнце, расположены на главной последовательности, одна (класса В0) существенно выше, а другая (класса М0) – существенно ниже Солнца. Четвертая звезда – типичный красный гигант с массой несколько большей, чем у Солнца. Наконец последняя звезда – представитель белых карликов, занимающих самое нижнее положение на диаграмме спектр – светимость.

Следует иметь в виду, что все числа, приведенные в табл. 12, как правило, являются результатом грубых предварительных расчетов, к тому же округленных для удобства запоминания.

2. ПЛАНЕТАРНЫЕ ТУМАННОСТИ

Известны звезды, которые являются как бы наглядной иллюстрацией того, что красные гиганты могут превращаться в белые карлики. Нас они интересуют еще и потому, что окружены горячей газовой оболочкой, свойства которой напоминают газовые туманности, рассматриваемые в следующей главе. Но внешнему сходству с дисками планет, наблюдаемыми в телескоп, они называются планетарными туманностями (рис. 200). В центре их всегда можно заметить ядро – горячую звезду, спектр которой напоминает спектр звезд Вольфа – Райе (см. стр. 438) или звезд класса О.

Самым близким и крупным из подобных объектов является планетарная туманность Хеликс в созвездии Водолея, видимый размер которой только вдвое меньше Луны. При расстоянии в 700 пс это соответствует истинным размерам туманности почти в 3 пс. Очень известной также является кольцевая туманность в созвездии Лиры. Большинство планетарных туманностей, которых в настоящее время найдено около 1000, имеют значительно меньшие размеры, в среднем 0,05 пс, и концентрируются преимущественно к центру Галактики, а не к ее плоскости. Спектры самих планетарных туманностей (рис. 201) представляют собой слабый континуум, на фоне которого видны яркие эмиссионные линии, причем сильнее всего выделяются запрещенные линии однажды и дважды ионизованных кислорода и азота (особенно небулярные линии N1 и N2), линии водорода и нейтрального гелия. По внешнему виду планетарных туманностей, которые обычно имеют симметричную форму и часто выглядят кольцами, можно заключить, что они представляют собой оболочку из сильно разреженного ионизованного газа, окружающую звезду и имеющую, возможно, форму тороида. По смещениям линий в спектре этих оболочек обнаружено, что они расширяются в среднем со скоростью в несколько десятков километров в секунду.

Рис. 201. Бесщелевой (в середине) и щелевой (справа) спектры планетарной туманности NGC 6543, изображенной слева. Цифры – длины волн в ангстремах.

Полное количество энергии, излучаемой всей планетарной туманностью, в десятки раз больше, чем излучение ядра в видимой области спектра. Поскольку центральная звезда очень горячая и обладает температурой во много десятков тысяч градусов, максимум ее излучения лежит в невидимой ультрафиолетовой области спектра. Жесткое излучение ядра ионизует разреженный газ туманности и нагревает его до температуры, достигающей одного-двух десятков тысяч градусов. Вместо него атомы туманности испускают видимое излучение, спектр которого содержит наблюдаемые эмиссионные линии и слабое непрерывное свечение. По-видимому, планетарные туманности – определенная стадия эволюции некоторых звезд, возможно, похожих на неправильные переменные типа RV Тельца. В стадии планетарной туманности звезда сбрасывает с себя оболочку и обнажает свои горячие внутренние слои. Судя по скорости расширения оболочки, этот процесс должен происходить очень быстро (около 20 000 лет). Существенные изменения за это время могут иметь место и внутри звезды. Есть основания полагать, что, пройдя стадию планетарных туманностей, некоторые звезды превращаются в белые карлики.

3. ДВОЙНЫЕ ЗВЕЗДЫ

Часто на небе встречаются две или несколько близко расположенных звезд. Некоторые из них на самом деле далеки друг от друга и физически не связаны между собой. Они только проектируются в очень близкие точки на небесной сфере и потому называются оптическими двойными звездами. В отличие от них, физическими двойными называются звезды, образующие единую динамическую систему и обращающиеся под действием сил взаимного притяжения вокруг общего центра масс. Иногда наблюдаются объединения трех и более звезд (тройные и кратные системы). Если компоненты двойной звезды достаточно удалены друг от друга, так что видны раздельно (могут быть разрешены), то такие двойные называются визуально двойными. Двойственность некоторых тесных пар, компоненты которых не видны в отдельности, может быть обнаружена либо фотометрически (затменные переменные звезды), либо спектроскопически (спектрально-двойные).

§ 154. Общие характеристики двойных систем

Двойные звезды весьма часто встречаются в природе, поэтому их изучение существенно не только для выяснения природы самих звезд, но и для космогонических проблем происхождения и эволюции звезд. Чтобы убедиться в том, что данная пара звезд физически связана и не является оптически двойной, необходимо произвести длительные наблюдения, позволяющие заметить орбитальное движение одной из звезд относительно другой. С большой степенью вероятности физическая двойственность звезд может быть обнаружена по их

собственным движениям (см. § 91): звезды, образующие физическую пару (компоненты двойной звезды), имеют почти одинаковое собственное движение. Иногда видна только одна из звезд, совершающих взаимное орбитальное движение. В этом случае ее путь на небе выглядит волнистой линией. В настоящее время известны десятки тысяч тесных визуально двойных звезд. Из них только 10% уверенно обнаруживают относительные орбитальные движения и лишь для 1% (примерно для 500 звезд) оказывается возможным надежно вычислить орбиты. Движение компонентов двойных звезд происходит в соответствии с законами Кеплера

(см. § 40): оба компонента описывают в пространстве подобные (т.е. с одинаковым эксцентриситетом) эллиптические орбиты вокруг общего центра масс. Таким же эксцентриситетом обладает орбита звезды-спутника относительно главной звезды, если последнюю считать неподвижной. Большая полуось орбиты относительного движения спутника вокруг главной звезды равна сумме больших полуосей орбит движения обеих звезд относительно центра масс. С другой стороны, величины больших полуосей этих двух эллипсов обратно пропорциональны массам звезд. Таким образом, если из наблюдений известна орбита относительного движения, то на основании формулы (2.23) можно определить сумму масс компонентов двойной звезды. Если же известны отношения полуосей орбит движения звезд относительно центра масс, то можно найти еще отношение масс и, следовательно, массу каждой звезды в отдельности. В этом также заключается огромная роль изучения двойных звезд в астрономии: оно позволяет определить важную характеристику звезды – массу, знание которой необходимо, как мы видели, для исследования внутреннего строения звезды и ее атмосферы. Для определения элементов орбиты двойной звезды рассмотрим движение спутника S2 относительно главной звезды S1 (рис. 202). Она является эллипсом с большой полуосью а = а1 + а2, где а1 и а2 – большие полуоси эллипсов, описываемых каждой звездой вокруг общего центра масс. Главная звезда 5) находится в фокусе этого эллипса. Точка орбиты спутника, ближайшая к главной звезде, называется периастром (П), противоположная – апоастром (А). Движение спутника относительно главной звезды характеризуется элементами орбиты: величина орбиты определяется длиной большой полуоси а; форма – эксцентриситетом орбиты е; положение плоскости орбиты относительно наблюдателя – углом наклонения плоскости орбиты i, т.е. углом, который она составляет с перпендикулярной к лучу зрения картинной плоскостью; движение спутника характеризуется периодом обращения Р, обычно выражаемым в годах; положение спутника в любой момент времени легко определить, если задать момент прохождения спутника через периастр Т.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.