Маркус дю Сотой - О том, чего мы не можем знать. Путешествие к рубежам знаний Страница 26

Тут можно читать бесплатно Маркус дю Сотой - О том, чего мы не можем знать. Путешествие к рубежам знаний. Жанр: Научные и научно-популярные книги / Прочая научная литература, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Маркус дю Сотой - О том, чего мы не можем знать. Путешествие к рубежам знаний читать онлайн бесплатно

Маркус дю Сотой - О том, чего мы не можем знать. Путешествие к рубежам знаний - читать книгу онлайн бесплатно, автор Маркус дю Сотой

Этот шестиугольник стал тем розеттским камнем, который открыл для физики элементарных частиц совершенно новое направление, хотя для описания этого переворота обычно используют другую культурную аналогию. Путеводный свет этой фигуры с восемью частицами, соответствующей такому восьмимерному представлению, привел к так называемому «восьмеричному пути», название которого цитирует буддистскую идею восьмеричного пути к духовному просветлению.

Существуют и другие фигуры, соответствующие объектам разных размерностей, на которые может воздействовать SU(3). Восхитительное откровение состояло в том, что эти другие схемы можно использовать для расположения других обитателей нашего зверинца частиц. Оказалось, что разные геометрические представления симметрий группы SU(3) отвечают за разные физические частицы, из которых состоит материя Вселенной.

Я не перестаю поражаться тому, как физический мир снова и снова оказывается математическим объектом. Спрашивается, в том ли тут дело, что математика просто дает удобные средства для связного описания физической Вселенной, или же физическая Вселенная на самом деле является физическим проявлением математического объекта? Эта новая связь превратила физические частицы в геометрические элементы, стабилизированные группой симметрии, действующей в геометрическом пространстве.

Гейзенберг был прав, когда писал: «Современная физика определенно признала правоту Платона. Собственно говоря, мельчайшие элементы материи не есть физические объекты в обычном смысле этого слова; они являются формами, идеями, которые можно недвусмысленно выразить только на языке математики». На смену Платоновым икосаэдру воды и тетраэдру огня пришла эта новая странная симметричная форма группы SU(3).

Когда физический мир превращается в математический объект, я немедленно чувствую, что могу его понять. Математика симметрии – это мой язык. Для большинства людей превращение фундаментальных частиц в математические элементы означает отдаление от известных им понятий. Сравнение элементарных частиц с бильярдными шарами или волнами придает этим частицам большую осязаемость. Как можно понять что-либо, если оно не вытекает из нашего опыта физического взаимодействия с окружающим миром? Даже абстрактный язык восьмимерных симметричных объектов возможен лишь как абстрактное расширение идей о вещах, знакомых нам в своей физической форме, таких как симметрия моей игральной кости из Лас-Вегаса.

Многоликая симметрия

Тут важно отметить, что могут существовать несколько разных геометрических объектов, в основе которых лежит одна и та же группа симметрии. И наоборот, если имеется некая группа симметрии, могут существовать несколько разных геометрических объектов, симметрии которых описываются этой группой. Математики говорят, что объект является представлением абстрактной группы симметрии подобно тому, как три яблока или три игральные кости являются физическими проявлениями абстрактной концепции числа 3. Например, если взять все ту же игральную кость, ее можно повернуть 24 различными способами. Рассматривая четыре диагонали, проходящие между противоположными углами кубика, можно сказать, что такие повороты производят перестановки этих диагоналей.

Если поместить на углы кубика четыре игральные карты (туза, короля, даму и валета), то каждый поворот будет перетасовывать эти карты: всего существует 24 разных способа перетасовки четырех карт. Но можно получить и другое физическое представление этой группы симметрии. Возьмем тетраэдр и рассмотрим повороты и отражения этой фигуры: в этом случае также существуют 24 разные симметрии. Если приклеить игральные карты на грани четырехгранной треугольной пирамиды, то симметрии тетраэдра снова дают 24 разных варианта перетасовки этих карт. Эта группа симметрии имеет две разных трехмерных реализации в качестве симметрии геометрического объекта – одна из них включает в себя вращения куба, а другая – вращения и отражения тетраэдра. Оказывается, что если посмотреть на все физические геометрические представления группы SU(3) во всех измерениях, то эти симметричные объекты позволят создать все разнообразие появившихся фундаментальных частиц.

В 1961 г. два физика, Гелл-Манн и Юваль Неэман, независимо друг от друга выявили в этих частицах такие закономерности. При этом Неэман совмещал занятия физикой с карьерой в Силах обороны Израиля и был отправлен в Лондон на должность военного атташе. Сначала он собирался изучать общую теорию относительности в Кингс-колледже, но, поняв, что тот находится в нескольких милях от посольства Израиля, расположенного в Кенсингтоне, решил разузнать, чем занимаются по соседству, в Имперском колледже. Там занимались физикой элементарных частиц. Так Неэман переключился с предельно большого на предельно малое.

Хотя схема, составленная для частиц лямбда, сигма и кси, при добавлении протона и нейтрона соответствовала восьмимерной симметрии SU(3), в аналогичной схеме для каонов и пионов не хватало частицы, которая должна была быть в ее центре. Либо схема была ошибочной, либо существовала еще неоткрытая частица. Гелл-Манн опубликовал свое предсказание существования такой частицы в препринте Калтеха в 1961 г. И всего несколько месяцев спустя физики из Беркли[42] благополучно открыли эта-мезон.

Для новой теории это идеальный вариант развития событий. Если теория делает физическое предсказание, которое затем подтверждается, можно быть уверенным, что ставка сделана правильно. Та же история повторилась, когда и Гелл-Манн, и Неэман были в 1962 г. на конференции в ЦЕРН. На этой конференции было объявлено об открытии множества новых частиц – трех Σ*-гиперонов со странностью –1 и двух Ξ*-гиперонов со странностью –2. Предполагалось, что эти частицы должны соответствовать одной из схем, иллюстрирующих действие группы симметрии SU(3) на симметричный объект в более высоких измерениях.

Гелл-Манн и Неэман независимо друг от друга сидели на лекции, пытаясь встроить эти новые частицы в свои схемы, когда у обоих начала проявляться другая картинка, соответствующая еще одному симметричному объекту, на котором действует группа SU(3), – объекту десятимерному. Но один из углов схемы оставался незаполненным. Частиц было всего девять. Гелл-Манн и Неэман одновременно осознали, что одна позиция в схеме пустует, из чего следовало предсказание существования новой частицы. Первым поднял руку Гелл-Манн, который и предсказал омега-гиперон со странностью –3. Это предсказание было подтверждено в январе 1964 г.

История периодической системы Менделеева заново повторилась в XX в.: основополагающая закономерность была выявлена, но в головоломке не хватало некоторых элементов. Подобно тому как открытие недостающих атомов придало убедительности модели Менделеева, открытие этих недостающих частиц помогло убедить физиков в том, что эти математические схемы являются могущественным средством ориентации в зоопарке частиц.

Закономерности, открытые Менделеевым в периодической системе, оказались следствием того, что атомы элементов состоят из фундаментальных ингредиентов – протонов, электронов и нейтронов. Существовало ощущение, что закономерности, найденные во всех этих вновь открытых частицах, намекают на нечто похожее – на существование в основе сотен зарегистрированных частиц еще более фундаментальных кирпичиков.

Кварки – недостающий последний уровень?

Некоторые физики заметили, что если расположить схемы, соответствующие разным многомерным представлениям SU(3), послойно, получается конструкция в форме пирамиды, у которой отсутствует самый верхний слой. На вершине всего этого должно быть что-то похожее на простой треугольник. Такой треугольник соответствовал бы простейшему физическому представлению SU(3), действующему в трехмерной геометрии. Если посмотреть на эти слои с точки зрения симметрии, видно, что именно из недостающего слоя можно было бы получить все остальные слои. Но никто никогда не видел никаких частиц, которые соответствовали бы этому недостающему слою.

Среди тех, кто догадывался, что такой дополнительный уровень может предполагать три фундаментальные частицы, из которых могут быть построены все частицы, соответствующие следующим уровням, был Роберт Сербер, бывший правой рукой Оппенгеймера в «Манхэттенском проекте». В 1963 г. за обедом Сербер рассказал об этой идее Гелл-Манну, но, когда Гелл-Манн спросил его, какой электрический заряд могли бы иметь эти гипотетические частицы, Сербер затруднился с ответом. Гелл-Манн начал писать на салфетке и вскоре получил ответ. Их заряд должен быть равен 2/3 или –1/3 заряда протона. Такой ответ казался бессмысленным. «Странный был бы выверт»[43], – заметил Гелл-Манн. Никаких объектов, заряд которых не был бы равен целому числу зарядов электрона или протона, в истории физики никогда не наблюдалось.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.