Вернер Гильде - Зеркальный мир Страница 26
Вернер Гильде - Зеркальный мир читать онлайн бесплатно
Переход при 906° С от гранецентрированной пространственной решетки, где есть место для-атомов углерода, к объемно-центрированной решетке с худшим использованием объема полностью подавляется, если около 25% атомов железа заместить хромом и никелем.
Так была открыта нержавеющая сталь. А в голове ее первооткрывателя уже роились новые идеи. Впоследствии он внес большой вклад в создание металлургической промышленности ГДР. Когда профессор д-р Эдуард Маурер бывал в хорошем расположении духа (что случалось не слишком часто), он рассказывал, чем для него кончилась эта история: «За то, что я спас Крупна от банкротства, мне заплатили 4 тыс. марок. Вечером, уходя из дома, я прихватил их с собой, а по пути назад остаток сунул кому-то на улице». В то время в Германии началась инфляция, и покупательная способность этих денег была исчезающе мала.
Путем двойникования соединяются в одно целое две атомные структуры с различной ориентировкой кристаллических решеток. Двойники зеркально подобны друг другу
Я привел здесь эту историю прежде всего потому, что она прекрасно иллюстрирует подчиненное положение, которое в бы-в лые времена отводилось ученому в промышленности. Кроме того, она показывает, как полезно «удивляться», и наконец, подводит нас к проблеме зеркального отражения.
Рассматривая нержавеющую сталь под микроскопом, мы увидим кристаллу с поперечными полосами, напоминающими ленты. Как показали исследования, на границе между кристаллом и такой «лентой» позиции атомов соотносятся между собой как прямое и зеркальное изображения. В таких случаях металлографы говорят о двойниковании.
У некоторых минералов двойники образуются при простом механическом давлении
Существует много способов образования двойников у кристаллов. Ряды атомов нарастают в обе стороны от какой-нибудь плоскости или оси в кристалле, находясь между собой в зеркальном соответствии. Реже удается получить двойники некоторых кристаллов давлением. Если нажать на кристалл известкового шпата ножом, то часть кристалла отскочит в позицию зеркального отражения по отношению к другой его части. При этом миллионы атомов и атомных рядов как бы «подчиняются» одному приказу. Они внезапно перескакивают в новое положение. Нас поражает также тот факт, что они попадают при этом точно в позицию зеркального отражения. Казалось бы, проще все-таки представить себе движение, ведущее к более или менее значительным отклонениям от такого (зеркального) положения.
Двойниковый кристалл гипса. Возраст кристалла - около 50 млн. лет
Разумеется, атомы «не знают» ничего ни о зеркалах, ни о зеркальных отражениях. Они всегда приводятся в положения, которым соответствует минимум энергии. (Камень на вершине горы обладает максимумом энергии, а в долине - минимумом, поэтому он катится не вверх, а вни!з по склону.) Такой энергетический минимум обеспечивается только в регулярной решетке. Однако две различные позиции в решетке лишь тогда могут взаимно сочетаться, не вызывая ее искажения, когда они находятся между собой в зеркальном соответствии. Между тем существуют десятки марок сталей, имеющих при комнатной температуре такую же пространственную решетку, какую чистое железо имеет лишь при температуре выше 906° С. В честь металлурга У. Робертса-Остена (1843-1902) железо с этой решеткой называется аустенитом. Стали, характеризующиеся такой упаковкой, получили название «аустенитные стали».
С помощью травления металлографам удается выявить в кристаллах участки различной ориентировки. Там, где на фотографии видны полосы, пересекающие кристалл, присутствуют двойники. (Увеличение 200 : 1.)
Собственно говоря, слово «нержавеющая» сейчас используется только применительно к стальным столовым приборам и предметам домашнего обихода. Аустениты ныне настолько усовершенствованы, что одни из них стали устойчивыми против различных химических веществ, другие выносят воздействие горячих агрессивных газов и паров. Применение аустенитов составило особую отрасль техники. Аустенитная сталь немагнитна и по этому признаку легко отличима от обыкновенных сталей. Это вызывает особый интерес к аустенитной стали как к стратегическому материалу. Так, после вступления ФРГ в НАТО на ее верфях были заложены подводные лодки. Чтобы эти лодки нельзя было обнаружить с помощью радиолокатора и дабы обезопасить их от магнитных мин, корпуса лодок решили изготовить из аустенитной стали. Из соображений секретности металлургам не объяснили, для чего предназначается заказанный им металл. В результате был изготовлен аустенит, неустойчивый против морской воды. Хотя эта сталь и называлась нержавеющей, но под действием морской воды в корпусах лодок стали появляться трещины. Вследствие этого одна из лодок вместе с экипажем и со всем, что на ней находилось, затонула в Северном море, а остальные пришлось пустить на слом.
СОВЕРШЕНСТВО С МЕЛКИМИ ИЗЪЯНАМИ
В ходе наших предыдущих рассуждений о плотнейших шаровых упаковках кому-нибудь, наверное, приходила в голову мысль, что такие упаковки способны возникать не только путем тщательной укладки атомов один к одному, но и случайно. Ради опыта можно было бы взять ящик с шарами, потрясти его хорошенько и потом исследовать структуру упаковки. Такой эксперимент и был проведен. Однако при этом никогда не получалась плотнейшая упаковка шаров с заполнением объема в 74%, обычно плотность упаковки составляла около 60%. Очевидно! что кристаллы приобретают свое строение не случайным образом, здесь существует какая-то закономерность. Не даром кулек с горохом или крупой всегда используется лишь на 50-60% своего объема.
Голландский кристаллограф Фриц Лавес исследовал вопрос о том, какова самая рыхлая (наименее плотная) упаковка атомов, вообще возможная в кристаллах. Она ведь должна быть построена таким образом, чтобы некоторые атомы все же соприкасались между собой, иначе не сможет возникнуть твердое тело. Лавес пришел к решетке с заполнением объема в 5,5%. Однако в природе, по-видимому, таких кристаллов не бывает.
После того как ученые разобрались в строении кристаллов, они взялись за определение их теоретической прочности. Это в принципе очень просто. Между атомами действуют силы связи, величина которых с достаточной точностью устанавливается физикой твердого тела. Из таких частных сил, естественно очень малых, слагаются общие суммарные силы. Пожелай кто-то разорвать кристалл металла, и ему придется преодолеть эти суммарные силы связи.
Из подобных соображений следовало, что прочность металлов на разрыв должна составлять около 10 000 Н/мм2. Однако в действительности металлы имеют прочность, к сожалению, лишь от 100 до 1000 Н/мм2.
Так не значит ли это, что теория сил связи в кристаллах неверна? Несколько поколений исследователей размышляли над этим вопросом. Вычисления и эксперименты подтвердили правильность теории. Однако упаковка кристаллов, увы, не столь безупречна, как в случае с нашими шариками для пинг-понга. И здесь тоже обнаруживается, что, хотя природа в общем и целом построена симметрично, в мелочах она допускает отклонения.
Все наши кристаллы содержат дефекты, или, как говорят кристаллографы, дислокации. Теоретически эти дислокации снижают возможную прочность кристаллов более чем на 90%. В настоящее время мы уже научились выращивать вполне или почти бездефектные кристаллы, прочность которых на порядок выше значений, чем у ранее известных материалов. К сожалению, такие кристаллы очень невелики. Стоит вырастить их более крупными, как вновь появляются дефекты. В технике подобные бездефектные высокопрочные кристаллы металлов или углерода называют нитевидными. Нет сомнения, что в обозримом будущем удастся создать методы изготовления бездефектных материалов больших размеров. Успешные опыты по выращиванию крупных монокристаллов высочайшей частоты проведены в ходе осуществления совместного советско-американского космического проекта «Союз-Аполлон» и позднее на советской орбитальной станции «Салют-5». В этих экспериментах использовались условия невесомости и высокого вакуума, присущие космическому пространству.
Из мелких шариков можно построить решетку, которая, подобно природным кристаллам, содержит дефекты в форме дислокаций. Эти дефекты удивительным образом всегда устраняются сами собой
Тем не менее мы можем констатировать следующее: раз в реальных кристаллах симметрия «вплоть до последнего атома» не выдерживается, нельзя использовать теоретические значения прочности, рассчитанные для идеальных кристаллов. Как только будет решена проблема создания бездефектных материалов в промышленных масштабах, наши мосты, железнодорожные вагоны, краны и самолеты станут гораздо легче.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.