Александр Петров - Гравитация От хрустальных сфер до кротовых нор Страница 27
Александр Петров - Гравитация От хрустальных сфер до кротовых нор читать онлайн бесплатно
Рис. 7.4. Первая гравитационная линза
Насколько плодотворным было замечание Зворыкина и, безусловно, последующий анализ Цвикки, стало ясно спустя более сорока лет. В 1979 году группа английских астрономов обнаружила первую гравитационную линзу при наблюдении двойного квазара QSO 0957+16 А, В: угловое расстояние между изображениями порядка 6», а гравитационной линзой являлась галактика, рис. 7.4. Таким образом, предсказание Цвикки подтвердилось. На настоящий момент открыто более полусотни объектов, которые представляют результат гравитационного линзирования, и это число постоянно растёт. Замечательный космолог, астрофизик, физик–теоретик Яков Зельдович (1914–1987), рис. 7,5, с его широчайшим научным кругозором, не мог не оценить важности этого открытия и обратил на него внимание одного из своих учеников — Михаила Сажина Сейчас как теоретическое изучение этого явления, так и поиски новых наблюдательных подтверждений активно продолжаются.
Теперь расскажем о физике явления. Действительно, как было замечено Лоджем, гравитационные линзы не имеют «фокусного расстояния» в том смысле, как её имеют оптические линзы. Поэтому их действие оказывается несколько непривычным. Они также «собирают» свет, при некоторых условиях это приводит к повышению яркости наблюдаемого объекта. Но более выдающимся их проявлением является «построение» двух, а иногда нескольких изображений этого объекта. Обратимся к схеме на рис. 7.6. На ней проиллюстрировано как действует точечная гравитационная линза. Собственно объект наблюдения (квазар) находится в точке S, линза в точке D а наблюдатель в точке О.
Рис. 7.5. Яков Зельдович
Два луча (жирные линии) отклоняются линзой так, что наблюдатель видит два изображения квазара на небесной сфере: точки S1 и S2. В случае, если точечный источник находится точно на оси симметрии, изображение является кольцом, которое обсуждалось в работах Хвольсона и Эйнштейна. Однако наблюдать подобное кольцо в реальности в случае точечного источника невозможно, поскольку при самом малом изменении параметров кольцо исчезает и появляется два точечных изображения.
Рис. 7.6. Геометрия точечной гравитационной линзы
Чаще всего обнаружить гравитационные линзы можно по наблюдениям пар квазаров, которые имеют похожие спектры и временную переменность компонентов, отличающуюся лишь временным сдвигом, который может принимать значения для различных пар изображений от нескольких дней до нескольких лет!
В случае, когда источник не точечный, появление кольца в принципе возможно, хотя скорее будет два растянутых изображения в виде дуг. В реальных ситуациях или угловое расстояние между изображениями слишком мало, или линза имеет большую массу и большие размеры, так что её нельзя рассматривать как материальную точку (как в первых наблюдаемых примерах гравитационных линз). Реальные эффекты гравитационного линзирования зависят от разных параметров, а число возможных изображений и сами изображения разнообразны.
Гравитационные линзы в настоящее время являются и важным инструментом астрономических исследований. С их помощью можно: 1) получить независимую от других методов исследований оценку параметров расширения Вселенной; 2) оценить массы гравитационных линз, большая часть которых испускает слишком мало электромагнитного излучения, чтобы их можно было обнаружить с помощью стандартных астрономических методов; 3) по наблюдаемому изменению формы удалённых фоновых галактик с помощью методов так называемого слабого гравитационного линзирования можно восстановить распределение поверхностной плотности удалённых скоплений галактик; 4) по характерному изменению наблюдаемой светимости фоновой звезды можно обнаружить невидимые объекты с массами порядка солнечной, то есть обнаружить так называемое микролинзирование. Это как раз то явление, которое Хвольсону и Эйнштейну казалось слишком недоступным для наблюдения.
Недавно, в 2007 году, было установлено, что одно из событий микролинзирования вызвано коричневым карликом — это почти невидимые объекты небольшой (по звёздным меркам) массы, Таким образом, микролинзирование расширяет возможности исследования этих малодоступных для обнаружения и наблюдений, но очень интересных и важных тусклых звёзд.
Глава 8. Чёрные дыры
Горизонт стремительно загибался всё круче и круче, и казалось, что все мы находимся на дне колоссального кувшина.
Аркадий Стругацкий, Борис Стругацкий «Понедельник начинается в субботу»Тёмные звезды Мичелла–Лапласа
Как ни странно, чтобы начать рассказ о чёрных дырах, которые предсказала общая теория относительности, мы снова должны вернуться к временам Ньютона. Как мы уже обсуждали, и сам Ньютон, и его современники имели все основания полагать, что световые лучи отклоняются тяготеющими телами, то есть свет притягивается точно так же, как обычные материальные частицы. Этого было вполне достаточно, чтобы построить модель невидимой (тёмной, чёрной) звезды. У такой звезды сила притяжения на поверхности, вычисленная в соответствии с законом всемирного тяготения, должна быть такой, что свет не может покинуть её. Поскольку это было время научного подъёма в просвещённом обществе, то, видимо, многие задумывались об этой проблеме. Сейчас известно, что в 1783 году свои соображения по этому поводу представил английский священник и один из основателей научной сейсмологии Джон Мичелл (1724–1793). Независимо, но позднее, аналогичные выводы были сделаны французским математиком, физиком и астрономом Пьером Лапласом (1749–1827). Аргументацию Лапласа мы и приводим.
Результаты были представлены в книге «Изложение системы мира», вышедшей в 1795 году. Утверждение Лапласа звучало следующим образом: «Светящаяся звезда с плотностью, равной плотности Земли, и диаметром в 250 раз больше диаметра Солнца, не даёт ни одному световому лучу достичь нас из‑за своего тяготения; поэтому возможно, что самые яркие небесные тела во Вселенной оказываются по этой причине невидимыми». Доказательство этого утверждения он опубликовал позднее. Расчёт был основан на понятии второй космической скорости на поверхности небесного тела. Это та скорость, которую надо придать объекту, чтобы он, поборов тяготение, покинул небесное тело. Если начальная скорость меньше второй космической, то силы тяготения затормозят и остановят движение объекта. Для примера: вторая космическая скорость на поверхности Земли равна 11 км/с, на поверхности Юпитера — 61, на поверхности Солнца — 620. Вторая космическая скорость на поверхности небесного тела тем больше, чем больше масса и чем меньше радиус этого тела. А поскольку скорость света была известна Лапласу, то ему оставалось смоделировать небесное тело, для которого эта скорость оказалась бы второй космической.
Снова решение Шварцшильда
Пример невидимой звезды Мичелла–Лапласа, хотя и основан на теории, которая не в состоянии дать правильные решения для реальных чёрных дыр со всем многообразием эффектов и необычных свойств, демонстрирует самое главное их свойство. Чёрная дыра обладает настолько сильным гравитационным притяжением, что нет сил в природе, которые бы могли его превозмочь.
Теперь самое время перейти к чёрным дырам в ОТО. Сначала нужно вернуться к решению Шварцшильда, повторим запись интервала для него:
До сих пор мы использовали его для описания искривлённого пространства–времени вокруг (вне) «обычных» статичных сферически симметричных тел, размеры которых существенно больше соответствующего гравитационного радиуса rg. Как видно, при этом условии внешнее решение не имеет особенностей. А как описывает теория Эйнштейна такие системы полностью? Внешнее вакуумное решение нужно дополнить внутренним, которое будет отличаться от решения Шварцшильда. Снова ограничимся условиями сферической симметрии и статичности, но к ним добавим условия «сшивки» с внешним решением на границе. Чтобы получить внутреннее решение, используют уже не вакуумные уравнения Эйнштейна, а уравнения ОТО с материей (веществом тела). Необходимо определиться также с уравнениями для самой материи. Как минимум, это уравнение состояния (связи между давлением и плотностью). Затем все уравнения решаются совместно. Такие внутренние решения найдены, они также не имеют никаких особенностей, то есть весь физический объект (тело с внешним полем) получается вполне регулярным, и пока нет речи о чёрных дырах.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.