Игорь Кароль - Парадоксы климата. Ледниковый период или обжигающий зной? Страница 33

Тут можно читать бесплатно Игорь Кароль - Парадоксы климата. Ледниковый период или обжигающий зной?. Жанр: Научные и научно-популярные книги / Прочая научная литература, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Игорь Кароль - Парадоксы климата. Ледниковый период или обжигающий зной? читать онлайн бесплатно

Игорь Кароль - Парадоксы климата. Ледниковый период или обжигающий зной? - читать книгу онлайн бесплатно, автор Игорь Кароль

Разумеется, при всем огромном и далеко не исчерпанном потенциале моделей, их возможности не безграничны.

На многие вопросы, связанные с предсказуемостью климатической системы, еще предстоит получить ответы. Кроме того, мы вряд ли когда-нибудь будем уверены в том, что модели включают надлежащее описание всех климатически значимых процессов. Не исключено, что сегодня мы недооцениваем роль каких-либо факторов в будущих изменениях климата, и, возможно, на этом пути нас еще ждут сюрпризы.

Тем не менее не подлежит сомнению то, что современные модели отвечают наивысшему уровню знаний, накопленных человечеством за время исследований климатической системы.

Когда-то Уинстон Черчилль говорил, что демократия несовершенна, но ничего лучше человечество пока не придумало. Аналогичное утверждение справедливо и в приложении к климатическим моделям: они несовершенны, но им нет альтернативы в оценках возможных изменений климата в будущем.

Глава десятая

Путешествие в мир предположений

Здравомыслящий человек пытается, учитывая все привходящие обстоятельства, высказывать предположения и делать выводы, но вот произошло нечто непредвиденное (а все учесть немыслимо), что смешало его планы, и он уже в полной растерянности, бестолковый и наивный.

Джонатан Свифт

Климат и экономика

Чередование успехов и неудач – неотъемлемый атрибут модельных прогнозов. Так было, и так, увы, будет. Все, на что мы способны, – стараться, чтобы успехов было больше. О причинах такого положения дел шла речь в предыдущем разделе. Но только ли от качества модели зависит, оправдается прогноз или нет? Есть, по крайней мере, еще одно необходимое условие высокой успешности предсказания – хороший сценарий. Термин, ассоциирующийся прежде всего с театром и кинематографом, он уже давно перекочевал и в другие сферы человеческой деятельности. Видно, прав был У. Шекспир, поставивший знак равенства между жизнью и театром, игрой в нем. Да и сам сценарий является плодом «игры ума» его создателя – эксперта. И если реалистичный сценарий служит отличным плацдармом для удачного прогноза, то сценарные ошибки не в состоянии исправить даже самая лучшая модель. Поэтому, говоря о прогнозировании будущих изменений климата, так важно иметь верное представление о тенденциях развития природы и общества и точно отразить их в числах, «наполняющих» сценарий.

По сути, сценарий для прогноза грядущих изменений климата представляет собой… предварительный прогноз поведения климатоформирующих факторов (Солнца, альбедо и пр.) в интересующий нас промежуток времени. Предсказать естественные колебания климата относительно несложно: их всесторонне изучают уже достаточно давно, и необходимый материал накоплен (речь идет только об общей картине – предвидеть, например, где, в каком году и с какой силой начнет извергаться «новый Везувий», конечно, невозможно). Но вот парадокс: куда труднее человеку предвосхитить поведение… человека, т. е. эволюцию антропогенных факторов, в первую очередь концентрации парниковых газов. Эти концентрации, очевидно, должны зависеть от общей направленности развития человечества – развития экономического, социального, экологического. Другими словами, прежде чем прогнозировать изменения климата, надо предугадать, что «натворят» люди в обозримом будущем. И не забыть при этом об обратной связи, ведь эти человеческие деяния также зависимы от изменений климата.

Появление первых подобных сценариев пришлось на конец 1980-х – начало 1990-х гг., когда климатические модели уже «выросли из коротких штанишек» и начали давать вполне пригодные для анализа результаты. Они были опубликованы в первом отчете МГЭИК (1990 г.). В последующих отчетах МГЭИК сценарии пересматривались и совершенствовались, сегодня используется третий вариант таких сценариев.

Существует около четырех десятков сценариев, из которых наиболее употребимы сценарии А1, А2, В1 и В2, обобщающие четыре возможных варианта эволюции антропогенных выбросов.

Сценарий А1 исходит из примерно линейной экстраполяции существующей современной тенденции. Причем рассматриваются три его разновидности: A1F (преимущественного использования ископаемого углеродного топлива и большого выброса CO2 в атмосферу), A1T (эксплуатации возобновляемых источников энергии с минимальным выбросом CO2) и A1B (промежуточный вариант между A1F и A1T). Сценарий А2 соответствует «пестрому миру с большим разнообразием региональных экономик и относительно слабым развитием новых технологий». Минимальные выбросы парниковых газов и сульфатных аэрозолей предполагаются в сценарии В1 «с конвергенцией (схождением) разных социальных систем к экономике информации и сервиса и внедрением чистых «зеленых» и энергоэффективных технологий». Сценарий В2 «описывает мир с промежуточным народонаселением и экономическим ростом, подчеркивая при этом локальные решения проблемы экономической, социальной и экологической устойчивости». В каждом из сценариев были определены ожидаемые эмиссии основных парниковых газов – CO2, СН4, N2O и SO2 как предшественника сульфатных аэрозолей, а по ним и концентрации этих газов. То, что при этом получилось, показано на рис. 25. Для сравнения на рисунке приведен и наиболее популярный из ранее использовавшихся сценарий IS92а.

Эмиссии, а с ними и концентрации имеют большой разброс, причем для большинства газов максимальный и минимальный уровни значений достигаются в сценариях A1F и A1T с использованием ископаемого углеродного и возобновляемых источников энергии соответственно. Для сценариев В1 и В2 характерны замедление роста и даже падение эмиссий, особенно заметное для отсутствующего на рис. 25 SO2. Концентрации углекислого газа и оксида азота(I), «время жизни» которых в атмосфере составляет 100 лет и более, растут с разной скоростью во всех сценариях вплоть до 2100 г., но при этом примерно до 2040 г. их различия от сценария к сценарию мало заметны. Куда более чувствителен к сценариям метан, время пребывания которого в атмосфере много короче – 10–12 лет.

Рис. 25. Тренды концентраций основных парниковых газов, рассчитанные в соответствии с указанными сценариями

Содержание в атмосфере другой большой группы парниковых газов – озоноразрушающих химикатов – подчинено ограничениям, накладываемым Монреальским протоколом. Что же касается самого озона, то изменения его концентрации в сценарии, как правило, не включаются и подлежат расчету в каждом модельном прогнозе. Виной тому – отсутствие потока озона в атмосферу от наземных источников (напомним, что его образование и разрушение происходит в самой атмосфере) и короткое «время жизни».

На рисунке 21, а цв. вклейки отображена в некотором смысле итоговая характеристика каждого из шести основных сценариев – глобальный выброс всех парниковых газов в эквиваленте CO2. Для того чтобы унифицировать выбросы различных парниковых газов, обычно используется специфическая единица измерения – эквивалентный выброс CO2. Согласно Обобщающему докладу МГЭИК (2007)[18], «эквивалентный выброс CO2 – это объем выброса CO2, который вызвал бы такое же комплексное радиационное воздействие за данный период времени, как и объем выброса какого-либо долгоживущего парникового газа или смеси парниковых газов. Эквивалентный выброс CO2 получают путем умножения объема выброса какого-либо парникового газа на его потенциал глобального потепления за данный период времени». Уже упоминавшийся потенциал глобального потепления показывает, во сколько раз молекула какого-либо парникового газа (метана, оксида азота(I) или др.) эффективнее поглощает радиацию по сравнению с молекулой CO2. Пунктиром выделена область, в пределах которой этот выброс имеет место при рассмотрении почти всех четырех десятков сценариев. Рисунок демонстрирует происходящие с течением времени изменения, при этом наиболее экологически «грязными» оказываются сценарии A1F и A2: в них к 2100 г. выбросы примерно в 3–4 раза превышают эмиссию в сценариях A1T и B1. Однако если сравнивать все сценарии (среди которых есть и весьма экзотические), то в них можно обнаружить и значительно большее превышение. Рис. 21, б цв. вклейки иллюстрирует рассчитанный с использованием группы климатических моделей отклик температуры приземного воздуха на указанное в левой части рисунка изменение эмиссии парниковых газов в течение XXI века. Справа в столбцах показаны наиболее вероятные приросты приземной температуры к 2100 г. для каждого из шести сценариев (выделены в столбце более насыщенным цветом) и разброс таких приростов, полученный разными группами моделистов (остальные части столбцов). К примеру, при выбросах по сценарию A1F большинство моделистов сошлись на том, что наиболее вероятно увеличение температуры на 4–4,2 °C, но какая-то из моделей показала рост лишь на 2,4 °C, а другая модель оценила этот рост в 6,4 °C. Розовая линия на рисунке не соответствует никакому сценарию, она представляет модельную оценку изменения приземной температуры при предположении, что атмосферные концентрации сохраняются постоянными на уровне величин 2000 г. (интересно, каким образом этого достичь на практике?). Даже при таких «щадящих» условиях имеет место небольшое (~0,2 °C в течение XXI века) увеличение приземной температуры. Это продолжение потепления «обеспечили» парниковые газы, уже накопленные в атмосфере в ХХ веке и постепенно из нее удаляемые.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.