А. Лельевр - Альманах "Эврика"-84 Страница 34
А. Лельевр - Альманах "Эврика"-84 читать онлайн бесплатно
Что же в ней произошло?
Во-первых, и это самое главное, существенное явление в биологии — неограниченное господство и применение представлений физики и химии. Эти науки помогли и помогают в изучении процессов жизни, столь отличных от предмета их собственных исследований. Они способствовали возникновению новых дисциплин — биохимии, биоорганической химии, биофизики, молекулярной генетики. Таким образом, возникло целое направление — физико-химическая биология.
Во-вторых, изменилось мировоззрение биологов. Символом веры биологии прошлого был целостный организм, а это означало невозможность расчленения сложных биологических явлений на отдельные простые составляющие. Однако оказалось, что можно изучать, к примеру, клетку, ее отдельные структурные элементы, имитировать в лабораторных условиях химические реакции, отдельные физические явления, происходящие в организме.
В-третьих, в биологию широко вошел эксперимент, иногда лишь отдаленно напоминающий те реальные явления, которые он моделирует. Благодаря этому биология из описательной науки превратилась в экспериментальную.
Все это говорит о том, что биология изменилась коренным образом, на смену плавному периоду в ее развитии пришел революционный.
Пожалуй, наиболее поразительные успехи получены в генетике. Прошло 115 лет со времени, когда Мендель начал свои классические опыты, приведшие к открытию законов наследственности.
А сейчас мы присутствуем при необычном подъеме, расширении генетических исследований в направлении генетической инженерии. Этой новой науке всего около девяти лет.
Наукой в настоящее время открывается и описывается такое множество явлений, создается столь много понятий, что вопрос о научной терминологии является актуальным и очень нелегким. Это по существу своему творческий процесс, некоторые терминологические нововведения кажутся естественными и не вызывают никаких сомнений, другие — вызывают.
Какой же смысл вкладывают в понятие «генетическая инженерия»? Ее содержание составляет система экспериментальных приемов, позволяющих создавать в лаборатории, в пробирке искусственные генетические структуры. В этой работе биолог-экспериментатор выступает как творец, как конструктор.
Идея лабораторного воспроизведения генетических структур существовала давно, однако ученые не представляли себе, каким способом из молекулы дезоксирибонуклеиновой кислоты (ДНК), являющейся конкретным носителем наследственности, можно выделить нужные гены и как затем их собрать в единую работающую структуру. Сейчас это удалось осуществить.
Каждый ген, ответственный за тот «ли иной наследственный признак, соответствует определенному отрезку молекулы ДНК. А она, в свою очередь, представляет собой цепочку, нить биологического полимера довольно большой протяженности и большого молекулярного веса.
У простых вирусов число генов невелико, может доходить до нескольких единиц, у бактерий — их уже несколько тысяч, у высших организмов, в том числе у человека, — сотни тысяч или даже несколько миллионов генов.
Каждая клетка многоклеточного организма имеет равное и полное число генов, свойственных данному организму. Однако в каждой клетке из этого общего фонда, называемого геномом, работает лишь определенный набор генов, выполняя строго предписанные ему природой функции. Остальные гены находятся как бы в резерве, устранены от активной деятельности.
В настоящее время число изученных генов, например, у некоторых бактерий составляет несколько сотен. Генетическая инженерия пока оперирует в пробирке с единичными генами, можно выделить определенный ген из одного организма и перенести его а другой, заставить его более или менее автономно работать в клетке, куда он помещен. Но это еще «гость» в клетке, его приютившей. Ввести же «лачку» генов пока мы не можем, потому что не в состоянии обеспечить их согласованную работу между собой и с т «ми генами, которые есть в клетке-хозяине.
А в организме они работают, как в хорошо слаженном симфоническом оркестре. Средства, которыми достигается такая слаженность, пока наукой до конца не поняты.
Генетическая инженерия делает лишь свои первые шаги. И все-таки она считается сейчас самой фундаментальной областью современной биологии. И вот почему. Ученые, используя методы генетической инженерии, работают не вслепую, а по заранее разработанному плану, целенаправленно.
Ученым удалось найти инструменты, пригодные для таких операций. Это созданные самой природой ферменты. Они содержатся в живых клетках. Одни из них рассекают молекулы ДНК в строго определенных участках на различные куски, другие, наоборот, их сшивают в единое целое.
Для этого, естественно, надо хорошо знать структуру того куска ДНК, который используется в эксперименте, его свойства и функции. В этой области, как я думаю, находится точка роста современной биологии.
Полным ходом идет работа по пути промышленного получения биологически активных веществ, различных лекарственных средств. Среди них — инсулин, интерферон, гормон роста — соматотропин, другие гормоны, в том числе гормоны щитовидной железы, стимуляторы иммунитета. С помощью генетической инженерии могут быть получены клетки — суперпродуценты, производящие свойственные им продукты в повышенных количествах. В результате можно получить такие важные вещества, как аминокислоты, ферменты, витамины.
В Основных направлениях экономического и социального развития нашей страны, утвержденных XXVI съездом партии, поставлена задача разработки биотехнологических процессов для производства такой продукции, которая будет широко использоваться в медицине, сельском хозяйстве, самой промышленности.
Само слово «биотехнология» появилось недавно, хотя биотехнологию человечество использует с давних времен. Различные ферментационные процессы, например производство хлеба, молочнокислых продуктов, пива, вина… К овладению этими процессами человек пришел чисто эмпирическим путем.
В нашем же столетии, вернее, в его середине биотехнология стала строиться уже на основе науки, в первую очередь микробиологии. Наступил ее второй в истории человечества этап.
Один из примеров такой биотехнологии — производство кормового белка для животноводства на основе парафинов нефти с использованием дрожжей.
Сейчас в нашей стране, как и в других передовых странах, существует огромная микробиологическая промышленность. И эта часть биотехнологии получает второе дыхание. Дело в том, что в микробиологической промышленности открылась возможность широкого использования так называемых иммобилизованных ферментов.
А сейчас уже возникает новая биотехнология, первым разделом которой являются генетико-инженерные манипуляции.
Таким образом, наряду с механической и химической технологиями огромное развитие получает биологическая. Она имеет существенные преимущества: в аппаратурном, технологическом отношении она проще, менее энергоемка, ее отходы менее опасны для окружающей среды.
Можно предвидеть еще одну мощную индустриальную революцию, теперь уже связанную с биологией.
Я уже сказал, что первый раздел новой биотехнологии — генетическая инженерия. Другими разделами являются клеточная и уже заявляющая о себе субклеточная инженерия.
Чем все эти разделы новой биотехнологии отличаются друг от друга? Сначала о том, что их объединяет. В основе лежат одни и те же приемы микробиологии. Различие можно проиллюстрировать на примере производства интерферона — важного противовирусного средства, используемого последнее время также при лечении опухолей. Его можно получить, по крайней мере, двумя способами. Используя методы генетической инженерии, надо сначала выделить человеческий ген интерферона, присоединить его к набору других генов, например кишечной палочки, затем ввести в клетку. Новая генетическая информация приведет к изменению обмена клетки, и в результате будет получен интерферон, по своим характеристикам соответствующий введенному гену.
А можно его получить, выращивая культуры клеток того же человека. Это довольно трудоемкий процесс, потому что животные клетки в отличие от растительных очень капризны и требовательны к среде. Растительные же клетки пока непригодны для получения человеческих гормонов.
Что касается субклеточной инженерии, то эти работы ведутся еще только в передовых лабораториях мира.
Конечные продукты при генетико-инженерных манипуляциях можно получить иные, чем в природе. Иногда аналогов их в природе вообще нет. В природе нельзя смешать различные виды. Например, нельзя получить гибрид человека и растения. А на основе генетической и клеточной инженерии, путем слияния клеток, все это сделать возможно.
Пока работа идет с единичными генами. Излюбленные объекты для исследования — некоторые разновидности кишечной палочки, широко распространенной в природе бактерии. И эти самые обычные в генетической инженерии объекты нежизнеспособны в окружающей среде, они не выживают в кишечнике человека.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.