С. Капица - Синергетика и прогнозы будущего Страница 35

Тут можно читать бесплатно С. Капица - Синергетика и прогнозы будущего. Жанр: Научные и научно-популярные книги / Прочая научная литература, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

С. Капица - Синергетика и прогнозы будущего читать онлайн бесплатно

С. Капица - Синергетика и прогнозы будущего - читать книгу онлайн бесплатно, автор С. Капица

Пассионарии стремятся изменить окружающее и способны на это. Это они организуют далекие походы, из которых возвращаются немногие.

Л.Н.Гумилев

В настоящее время ряд крупных исторических событий объясняется исследователями в рамках теории этногенеза, развитой Л.Н.Гумилевым. В соответствии с этой теорией, развитие этноса в большой степени предопределено внутренними причинами, его саморазвитием [9]. Ключевой переменной, характеризующей стадию развития этноса, является уровень его пассионарности.

Эта величина определяется числом людей, которые способны в ущерб собственному благополучию или безопасности менять ценности, стандарты поведения, отношения, создавать новое. "При этом пассионарии выступают не только как непосредственные исполнители, но и как организаторы. Вкладывая свою избыточную энергию в организацию и управление соплеменниками на всех уровнях социальной иерархии, они, хотя и с трудом, вырабатывают новые стереотипы поведения, навязывают их всем остальным и создают таким образом новую этническую систему, новый этнос, видимый для истории", – пишет Л.Н.Гумилев.

В ходе развития меняются императивы развития этноса, начиная от стремления к переустройству, проходя через поиск удачи, стремление к идеалу знания и красоты и далее к идеалу победы. Типичная зависимость пассионарности этноса от времени, выявленная Л.Н.Гумилевым, представлена на рис.12.

Рис. 12. Характерная зависимость пассионарности этноса от времени. Pki – уровень пассионарного напряжения системы. Качественные характеристики этого уровня ("жертвенность" и т.д.) следует рассматривать как некую усредненную "оценку" представителей этноса. Одновременно в составе этноса есть люди, обладающие и другими отмеченными на рис. характеристиками, но господствует один тип людей;

i – индекс уровня пассионарного напряжения системы, соответствующего определенному императиву поведения; i=-2, -1, ..., 6; при i=0 уровень пассионарного напряжения системы соответствует гомеостазу;

k – количество субэтносов, составляющих систему на определенном уровне пассионарного напряжения; k=n+1, n+2, ..., n+21, где n – первоначальное количество субэтносов в системе.

Примечание: Данная кривая – обобщение сорока индивидуальных кривых этногенеза, построенных нами для различных этносов. Пунктиром обозначено падение пассионарности ниже уровня гомеостаза, наступающее вследствие этнического смещения (внешней агрессии).

В этой самосогласованной и убедительной концепции, подтвержденной многочисленными историческими изысканиями, наиболее уязвимым моментом, вероятно, является начальная стадия возникновения этноса, так называемый пассионарный толчок. Сам автор концепции связывал его c некими "мутациями" либо с неизвестными космофизическими факторами. Развитие нелинейной динамики показывает, что можно обойтись без этих не вполне понятных и вызывающих сомнение сущностей. Возможности для этого предоставляет активно развиваемая в последние годы теория самоорганизованной критичности [16, 20, 21].

Одним из принципиальных результатов психологии индивидуальных различий является вывод о том, что распределение большинства способностей в популяции характеризуется гауссовым законом с плотностью вероятности r(x) ~ exp((x-x20)/s2) с небольшим превышением в области низких способностей. Гауссов закон характеризует также сумму большого числа случайных величин с конечными дисперсией и средним. Эти законы возникают в теории надежности, в термодинамике и во многих других случаях. Однако эти представления, лежащие в основе статистики, теории принятия решений и множества технологических проектов, применимы далеко не всегда.

Например, закон Рихтера-Гутенберга, показывающий, как меняется число землетрясений с ростом их энергии, имеет степенной характер. В соответствии с ним число землетрясений с энергией большей E пропорционально E-b , где 0,8<b<1,1, в зависимости от сейсмичности района. Эти же закономерности характерны для селей, снежных лавин, биржевых крахов, инцидентов с ядерным оружием, с утечкой конфиденциальной информации.

В нелинейной динамике было продемонстрировано, что в основе этих явлений, вероятно, лежит один и тот же механизм. Здесь мы всюду имеем дело не с независимыми событиями, а со множеством взаимосвязанных подсистем или элементов. Можно предположить, что таким же образом дело обстоит и в социальных системах на масштабах, характерных для исторических событий.

Базовой моделью теории самоорганизованной критичности является модель "куча песка" [20, 21]. Попробуем дать историческую интерпретацию этой модели. Представим себе социальную структуру общества как набор элементов, каждый из которых характеризуется некоторым социальным статусом (величина h), а также связями с ближайшими в структуре элементами. Естественно предположить, что в простейшем случае связи локальны. Информационного управления не происходит, и в своих действиях человек прежде всего ориентируется на поведение своих близких. Допустим, что социальный статус одного из элементов случайно повысился (припишем это действиям его друзей или проделкам благосклонного джокера). Если это изменение не слишком велико, то друзья, знакомые и коллеги готовы ему порадоваться (получение звания, премии и т.п.). Но, если это изменение слишком велико (Вы получили Нобелевскую премию, огромное наследство и т.д.), у вас могут возникнуть проблемы, которые приведут к изменению как вашего статуса, так и статуса окружающих. По-существу, это универсальная картина событий, которые могут развертываться в самых разных сообществах. При очевидных упрощающих предположениях формализация этой ситуации приводит к модели "куча песка" либо к ее аналогам.

Компьютерный анализ показывает, что для таких систем в большом интервале масштабов характерны степенные закономерности. Общее число элементов социальной структуры n, статус которых изменился, и число событий N, в ходе которых произошло такое изменение, связаны степенной функцией N ~ n-a. Продолжительность всех этих событий, до того как структура перейдет в равновесное состояние, также определяется степенным законом T ~ n-b. При этом редкие катастрофические события оказываются наиболее важными. Если предположить, что такая картина отражает историческую реальность, то появляется возможность сопоставить шкале исторических масштабов различные события. Годы, десятилетия – возникновение партий, предвыборных блоков, коалиций. Века – изменение границ, рождение и гибель больших государств, изменение идеологии. Тысячелетия (гигантские лавины) – жизнь этносов, мировых религий, цивилизаций.

Представляется интересным на имеющемся историческом материале провести количественное сопоставление результатов теории самоорганизованной критичности и реального хода исторических событий. При этом возникает интересная "проблема перенормировки". Число событий в обществе, общественных организаций и открывающихся возможностей, очевидно, связано с количеством людей, составляющих рассматриваемую общность. Например, число граждан Афин эпохи Перикла сравнимо с числом жильцов современного многоэтажного дома. Однако их вклад в жизнь общества и в мировую культуру несравнимы. По-видимому, надо вводить некоторый масштабный множитель. Результаты исследовательского проекта С.П.Капицы в области "исторической демографии" показывают, что это возможно сделать [22] (см. главу 4).

Исследование, проведенное И.Н.Трофимовой, А.Б.Потаповым и Н.А.Митиным [23], исходящих из элементарных фактов психологии индивидуальных различий и малых групп, показывает, какие неустойчивости могут привести к возникновению самоподдерживающейся социальной структуры, предлагающей новый стандарт отношений. Возможно, именно эти процессы и играют роль джокера на начальной стадии развития этногенеза.

Можно ожидать, что представления теории самоорганизованной критичности будут играть важную роль при построении "исторической механики".

Литература

1. Малинецкий Г.Г, Кащенко С.А., ПотаповА.Б. и др. Математическое моделирование системы образования. Препринт ИПМ им. М.В.Келдыша РАН. 1995. N100.

2. Малинецкий Г.Г. Высшая школа глазами математиков// Знание - сила. 1995. N10, с.16-25.

3. Гуриев С.М., Шахова М.Б. Модель самоорганизации торговых путей в экономике с несовершенной инфраструктурой// Матем. моделирование динамических процессов и систем. МФТИ, 1995, с.15-37.

4. Кургинян С. Седьмой сценарий. Часть 1. М.: Эксперим. творческий центр, 1992.

5. Математическое моделирование исторических процессов. М.: Ассоциация "История и компьютер", лаборатория исторической информатики истор. фак. МГУ, 1996.

6. Малинецкий Г.Г. Нелинейная динамика – ключ к теоретической истории? Препринт ИПМ им. М.В.Келдыша РАН. 1995. N81.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.