Евгений Страут - Естествознание и основы экологии Страница 5

Тут можно читать бесплатно Евгений Страут - Естествознание и основы экологии. Жанр: Научные и научно-популярные книги / Прочая научная литература, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Евгений Страут - Естествознание и основы экологии читать онлайн бесплатно

Евгений Страут - Естествознание и основы экологии - читать книгу онлайн бесплатно, автор Евгений Страут

В процессе формирования планет и позднее на протяжении миллиардов лет в их недрах и на поверхности происходили процессы плавления, кристаллизации, окисления и другие физико-химические процессы. Это привело к существенному изменению первоначального состава и строения вещества, из которого образованы все ныне существующие тела Солнечной системы.

Вдали от Солнца на периферии облака эти летучие вещества намерзали на пылевые частицы. Относительное содержание водорода и гелия оказалось повышенным. Из этого вещества сформировались планеты-гиганты, размеры и масса которых значительно превышают планеты земной группы. Ведь объем периферийных частей облака был больше, а стало быть, больше и масса вещества, из которого образовались далекие от Солнца планеты.

Данные о природе и химическом составе спутников планет– гигантов, полученные в последние годы с помощью космических аппаратов, стали еще одним подтверждением справедливости современных представлений о происхождении тел Солнечной системы. В условиях, когда водород и гелий, ушедшие на периферию про-топланетного облака, вошли в состав планет-гигантов, их спутники оказались похожими на Луну и планеты земной группы.

Однако не все вещество протопланетного облака вошло в состав планет и их спутников. Многие сгустки его вещества остались как внутри планетной системы в виде астероидов и еще более мелких тел, так и за ее пределами в виде ядер комет.

§ 6. Солнце

Солнце – центральное тело Солнечной системы – является типичным представителем звезд, наиболее распространенных во Вселенной тел. Как и многие другие звезды, Солнце представляет собой огромный газовый шар, находящийся в равновесии в поле собственного тяготения.

С Земли мы видим Солнце как небольшой диск, угловой диаметр которого примерно равен 0,5°. Его край достаточно четко определяет граница того слоя, от которого приходит свет. Этот слой Солнца называется фотосферой (в переводе с греческого – сфера света).

Солнце испускает в космическое пространство колоссальный по мощности поток излучения, который в значительной мере определяет условия на поверхности планет и в межпланетном пространстве. Полная мощность излучения Солнца, его светимость составляет 4 · 1023 кВт. Земля получает всего лишь одну двухмиллиардную долю солнечного излучения. Однако и этого достаточно, чтобы приводить в движение огромные массы воздуха в земной атмосфере, управлять погодой и климатом на земном шаре.

Основные физические характеристики Солнца

Масса (M) = 2 · 1030кг.

Радиус (R) = 7 · 108м.

Средняя плотность (р) = 1,4 · 103 кг/м3.

Ускорение силы тяжести (g) = 2,7 · 102 м/с2.

На основе этих данных, используя закон всемирного тяготения и уравнение газового состояния, можно рассчитать условия внутри Солнца. Такие расчеты позволяют получить модель «спокойного» Солнца. При этом принимается, что в каждом его слое соблюдается условие гидростатического равновесия: действие сил внутреннего давления газа уравновешивается действием сил тяготения. Согласно современным данным, давление в центре Солнца достигает 2 · 108 Н/м2, а плотность вещества значительно превышает плотность твердых тел в земных условиях: 1,5 · 105 кг/м3, т. е. в 13 раз больше плотности свинца. Тем не менее применение газовых законов к веществу, находящемуся в этом состоянии, оправдано тем, что оно ионизовано. Размеры атомных ядер, потерявших свои электроны, примерно в 10 тысяч раз меньше размеров самого атома. Поэтому размеры самих частиц пренебрежимо малы по сравнению с расстояниями между ними. Это условие, которому должен удовлетворять идеальный газ, для смеси ядер и электронов, составляющих вещество внутри Солнца, выполняется, несмотря на его высокую плотность. Такое состояние вещества принято называть плазмой. Ее температура в центре Солнца достигает примерно 15 млн К.

При столь высокой температуре протоны, которые преобладают в составе солнечной плазмы, имеют столь большие скорости, что могут преодолеть электростатические силы отталкивания и взаимодействовать между собой. В результате такого взаимодействия происходит термоядерная реакция: четыре протона образуют альфа-частицу – ядро гелия. Реакция сопровождается выделением

определенной порции энергии – гамма-кванта. Из недр Солнца наружу эта энергия передается двумя способами: излучением, т. е. самими квантами, и конвекцией, т. е. веществом.

Выделение энергии и ее перенос определяют внутреннее строение Солнца: ядро – центральная зона, где происходят термоядерные реакции, зона передачи энергии излучением и наружная конвективная зона. Каждая из этих зон занимает примерно 1/3 солнечного радиуса (рис. 4).

Рис. 4. Строение Солнца

Следствием конвективного движения вещества в верхних слоях Солнца является своеобразный вид фотосферы – грануляция. Фотосфера как бы состоит из отдельных зерен – гранул, размеры которых составляют в среднем несколько сотен (до 1000) километров. Гранула представляет собой поток горячего газа, поднимающийся вверх. В темных промежутках между гранулами находится более холодный газ, опускающийся вниз. Каждая гранула существует всего 5-10 мин, затем на ее месте появляется новая, которая отличается от прежней по форме и размерам. Однако общая наблюдаемая картина при этом не меняется.

Фотосфера – самый нижний слой атмосферы Солнца. За счет энергии, поступающей из недр Солнца, вещество фотосферы приобретает температуру около 6000 К. Прилегающий к ней тонкий (около 10 000 км) слой называют хромосферой, выше которой на десятки радиусов Солнца простирается солнечная корона (см. рис. 4). Плотность вещества в короне по мере удаления от Солнца постепенно уменьшается, но потоки плазмы из короны (солнечный ветер) проходят через всю планетную систему. Основными составляющими солнечного ветра являются протоны и электроны, которые значительно меньше альфа-частиц (ядер гелия) и других ионов.

Как правило, в атмосфере Солнца наблюдаются многообразные проявления солнечной активности, характер протекания которых определяется поведением солнечной плазмы в магнитном поле, – пятна, вспышки, протуберанцы и т. п. Наиболее известными из них являются солнечные пятна, открытые еще в начале XVII в. во время первых наблюдений при помощи телескопа. Впоследствии оказалось, что пятна появляются в тех сравнительно небольших областях Солнца, которые выделяются очень сильными магнитными полями.

Сначала пятна наблюдаются как маленькие темные участки диаметром 2000–3000 км. Большинство из них в течение суток пропадает, однако некоторые увеличиваются в десятки раз. Такие пятна могут образовывать большие группы и существовать, меняя форму и размеры, на протяжении нескольких месяцев, т. е. нескольких оборотов Солнца. У крупных пятен вокруг наиболее темной центральной части (ее называют тень) наблюдается менее темная полутень. В центре пятна температура вещества снижается до 4300 К. Несомненно, что такое понижение температуры связано с действием магнитного поля, которое нарушает нормальную конвекцию и тем самым препятствует притоку энергии снизу.

Самыми мощными проявлениями солнечной активности являются вспышки, в процессе которых за несколько минут иногда выделяется энергия до 1025Дж (такова энергия примерно миллиарда атомных бомб). Вспышки наблюдаются как внезапные усиления яркости отдельных участков Солнца в районе пятна. По скорости протекания вспышка подобна взрыву. Продолжительность сильных вспышек в среднем достигает 3 ч, а слабые длятся всего 20 мин. Вспышки также связаны с магнитными полями, которые в этой области после вспышки существенно меняются (как правило, ослабевают). За счет энергии магнитного поля плазма может нагреваться до температуры порядка 10 млн K. При этом значительно увеличивается скорость ее потоков, которая достигает 1000–1500 км/с, возрастает энергия электронов и протонов, входящих в состав плазмы. За счет этой дополнительной энергии возникает оптическое, рентгеновское, гамма– и радиоизлучение вспышек.

Потоки плазмы, образующиеся во время вспышки, через сутки-двое достигают окрестностей Земли, вызывая магнитные бури и другие геофизические явления. Например, при сильных вспышках практически прекращается слышимость радиопередач на коротких волнах по всему освещенному полушарию нашей планеты.

Наиболее крупными по своим масштабам проявлениями солнечной активности являются наблюдаемые в солнечной короне протуберанцы (см. рис. 4) – огромные по объему облака газа, масса которых может достигать миллиардов тонн. Некоторые из них («спокойные») напоминают по форме гигантские занавеси толщиной 3–5 тыс. км, высотой около 10 тыс. км и длиной до 100 тыс. км, подпираемые колоннами, по которым газ течет из короны вниз. Они медленно меняют свою форму и могут существовать в течение нескольких месяцев. Во многих случаях в протуберанцах наблюдается упорядоченное движение отдельных сгустков и струй по криволинейным траекториям, напоминающим по форме линии индукции магнитных полей. Во время вспышек отдельные части протуберанцев могут подниматься вверх со скоростью до нескольких сотен километров в секунду на огромную высоту – до 1 млн км, что превышает радиус Солнца.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.