Федор Кедров - Цепная реакция идей Страница 5
Федор Кедров - Цепная реакция идей читать онлайн бесплатно
Итак, гелий сначала был открыт в спектре солнечных лучей, затем в минералах и еще позже Резерфордом в радиоактивном распаде тория, урана и радия. После этих опытов внимание многих ученых было привлечено к гелию.
Теперь Резерфорд вместе с Гейгером и Марсденом приступил к задуманной им новой серии экспериментов. Результаты произвели переворот в физике. Это была наиболее драматическая глава в науке нашего времени. Резерфорд открыл атомное ядро и тем самым основал новую исключительно важную науку — ядерную физику.
Что это были за эксперименты? Резерфорд и Гейгер на первых порах продолжили наблюдение сцинтилляций, вызываемых альфа-частицами при ударе о люминесцентный экран из сернистого цинка. Прежде всего опыты привели Резерфорда к заключению, что каждая вспышка (сцинтилляция) вызывается одной альфа-частицей. Таким образом оправдалось предположение, выдвинутое им в книге «Радиоактивные вещества и их излучение», изданной еще во время пребывания его в Канаде. Резерфорд писал тогда, что наблюдение сцинтилляций на экране из сернистого цинка представляет собой очень удобный способ счета частиц, если каждая частица вызывает вспышку. Следовательно, если каждая вспышка вызвана одной альфа-частицей, то перед физиками открывается возможность наблюдать за поведением отдельных атомов.
Резерфорд и Гейгер визуально подсчитали, что в продолжение секунды из излучателя в одну тысячную грамма радия вылетает 130 тысяч альфа-частиц. Точность подсчета была безукоризненна. Оба ученых, к которым присоединился позднее Марсден, по многу часов проводили в затемненной лаборатории за утомительным счетом сцинтилляций. Гейгер рассказывал, что ему одному пришлось подсчитать в общей сложности миллион альфа-частиц.
Исследователи работали в очень скромных условиях, которые трудно представить себе молодому ученому в наше время. Гейгер писал: «В памяти возникает также мрачный погреб, в котором Резерфорд устанавливал свои чувствительные приборы для изучения альфа-частиц. Тот, кто спускался туда по двум ступеням, прежде всего слышал в темноте голос профессора, предупреждавшего, что помещение пересекает на высоте головы горячий трубопровод и, кроме того, необходимо осторожно, чтобы не упасть, перешагнуть две водопроводные трубы. После этого, наконец, в слабом свете вошедший различал самого Резерфорда, сидящего у приборов. Тотчас же великий ученый мог начать рассказывать в собственном неподражаемом стиле о развитии своих опытов и о трудностях, которые приходится преодолевать»)...
Вероятно, в этом же погребе начал свою работу ученик Резерфорда Марсден, когда ему было поручено считать альфа-частицы, проходящие через тонкие металлические пластинки. Эти пластинки помещались в прибор между излучателем альфа-частиц и люминесцентным экраном.
Поручая Марсдену эту работу, Резерфорд не рассчитывал обнаружить что-либо любопытное. При условии, что модель атома Томсона правильна (а тогда не было никаких оснований сомневаться в этом), опыт должен был показать, что альфа-частицы свободно проходят через металлические преграды. Однако что-то все-таки заставило Резерфорда пойти на этот новый эксперимент.
Марсдена поразило, что альфа-частицы в этом простом опыте ведут себя иначе, чем должны вести, если принять модель атома такой, какой ее представляет себе Томсон. Согласно модели Томсона положительный заряд распределен по всему объему атома и уравновешивается отрицательным зарядом электронов, каждый из которых имеет массу гораздо меньшую, чем масса альфа-частиц. Поэтому даже в редких случаях, когда альфа-частица столкнется с гораздо более легким по сравнению с ней электроном, она может лишь незначительно отклониться от своего прямолинейного пути. Но в опытах Марсдена альфа-частицы отнюдь не беспрепятственно проходили через металлическую пластинку. Нет, некоторые из них отклонялись после удара о пластинку на угол около 150°, т.е. почти обратно возвращались к излучателю. Таких возвращавшихся частиц было, правда, очень мало. Когда экспериментатор преграждал путь альфа-частицам более толстой пластинкой, то в его поле зрения появлялось больше альфа-частиц, отклонявшихся на большие углы. Это указывало, что замеченное Марсденом рассеяние альфа-частиц не представляет собой какого-нибудь поверхностного эффекта, т.е. оно не связано с поверхностью пластинки. Но Марсден не мог высказать каких-либо соображений о причине увиденного им странного поведения альфа-частиц. Он рассказал подробно о своих наблюдениях Резерфорду.
Позднее Резерфорд признался, что сообщение Марсдена произвело на него потрясающее впечатление: «Это было почти неправдоподобно, как если бы вы выстрелили пятнадцатифунтовым снарядом в кусок папиросной бумаги и снаряд отскочил бы обратно и поразил вас».
Резерфорд сразу представил себе, что эффект, наблюдавшийся Марсденом, мог быть только в одном случае: если альфа-частица, проникнув в атом, натыкалась на какую-нибудь массивную преграду, имеющуюся в нем, и отбрасывалась, получив при столкновении мощный удар.
Через три недели после беседы с Марсденом о результатах его наблюдений Резерфорд уже высказал мысль о том, что рассеяние альфа-частиц на большие углы можно объяснить существованием в атомах массивной части. Он назвал ее ядром (nucleus), использовав по аналогии термин, принятый в биологии и обозначающий центральную часть живой клетки.
Отныне модель атома Томсона должна была уйти в историю. Резерфорд предложил более достоверную и принципиально новую ядерную модель в виде системы, в центре которой расположена маленькая массивная часть — ядро, а вокруг нее по орбитам вращаются легкие электроны.
Теперь, когда ядерная физика достигла поразительных успехов, легко понять значение этого величайшего открытия.
Но тем не менее модель Томсона еще не отслужила свою службу. В последние десятилетия она была применена для объяснения структуры мезоатомов, составляющих одну из самых удивительных форм вещества (в мезоатомах роль электронов выполняют другие частицы — мезоны). Для обычных атомов модель Резерфорда, соответственно усовершенствованная, продолжает оставаться правильной и сейчас.
Сотрудник Резерфорда — известный английский физик-теоретик Чарлз Дарвин (внук автора эволюционной теории) писал: «Я считаю одним из величайших событий своей жизни то, что произошло в моем присутствии спустя полчаса после „рождения“ ядра. Это было во время воскресного ужина в манчестерской квартире Резерфорда. Я помню, как он говорил нам, что наблюдаемое большое рассеяние альфа-частиц показывает на существование в атоме необычайно могучих сил».
Открытие атомного ядра явилось важнейшим, принципиально новым моментом, меняющим прежние представления о строении атома. На этой основе родилась наука, значение которой теперь всем известно.
Остановимся на некоторых подробностях. Вот как Резерфорд представлял себе атом. Атом в нормальном, неионизованном состоянии нейтрален, так как в целом он содержит столько же положительного электричества (заряд ядра), сколько и отрицательного (заряд электронов). Атом имеет z электронов, каждый с зарядом e. Следовательно, ядро атома должно иметь заряд +ze. Атомы элементов должны отличаться друг от друга количеством электронов, или, что то же самое, целым числом z единичных зарядов ядра. Число z, характеризующее химический элемент, было названо атомным номером. Позднее было подмечено, что это число оказалось порядковым номером элемента в периодической системе.
В ядре сосредоточена вся масса атома. Это центральная область системы с трудно представляемым радиусом 10–12...10–13 сантиметра. Электроны же очень легкие частицы, масса которых в 1836 раз меньше массы протона — ядра атома водорода с наименьшим атомным номером z = 1. Заряд протона равен заряду электрона, но имеет противоположный знак.
За водородом в периодической системе расположен благородный газ гелий. Заряд ядра гелия в 2 раза больше заряда протона z = 2. Заряд и масса ядра возрастают вместе с атомным номером элемента. Например, элемент уран с атомным номером 92 имеет ядро с электрическим зарядом в 92 раза большим, чем заряд ядра водорода — протона. Атомный вес урана близок к 238.
Модель Резерфорда довольно хорошо объясняла структуру сложной системы атома. Но в ней имелись серьезные противоречия, которые Резерфорд хотя и хорошо понимал, объяснить не мог. Тогда ведь еще не было квантовой механики. Без нее многие противоречия не могли быть разрешены. Кроме того, не был открыт нейтрон, оказавшийся важным связующим звеном для объяснения структуры атома и происходящих в нем процессов.
По представлениям Резерфорда, вокруг массивного ядра по орбитам вращались электроны и вся система представляла некоторое подобие Солнечной системы. Поэтому модель называли планетарной. Но как могли электроны вечно вращаться вокруг ядра? До квантовой механики физики могли пользоваться для объяснения подобных явлений учением Максвелла, его электродинамикой. Согласно теории Максвелла электрон не мог бесконечно обращаться вокруг ядра, так как, излучая при своем движении энергию в виде периодически меняющегося электромагнитного поля, он неминуемо должен был бы упасть на ядро.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.