П.И.Бакулин, Э.В.Кононович, В.И. Мороз - Курс общей астрономии Страница 52

Тут можно читать бесплатно П.И.Бакулин, Э.В.Кононович, В.И. Мороз - Курс общей астрономии. Жанр: Научные и научно-популярные книги / Прочая научная литература, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

П.И.Бакулин, Э.В.Кононович, В.И. Мороз - Курс общей астрономии читать онлайн бесплатно

П.И.Бакулин, Э.В.Кононович, В.И. Мороз - Курс общей астрономии - читать книгу онлайн бесплатно, автор П.И.Бакулин

Вращение Земли вокруг оси проявляется во многих явлениях на ее поверхности. Например, пассаты (постоянные ветры в тропических областях обоих полушарий, дующие к экватору) вследствие вращения Земли с запада на восток дуют с северо-востока в северном полушарии и с юго-востока – в южном полушарии; в северном полушарии подмываются правые берега рек, в южном – левые; при движении циклона с юга на север его путь отклоняется к востоку и т.д.

a) б) Рис 48 Маятник Фуко. А – плоскость качания маятника.

Но наиболее наглядным следствием вращения Земли является опыт с физическим маятником, впервые поставленный физиком Фуко в 1851 г. Опыт Фуко основан на свойстве свободного маятника сохранять неизменным в пространстве направление плоскости своих колебаний, если на него не действует никакая сила, кроме силы тяжести. Пусть маятник Фуко подвешен на северном полюсе Земли и колеблется в какой-то момент в плоскости определенного меридиана l (рис. 48, a). Через некоторое время наблюдателю, связанному с земной поверхностью и не замечающему своего вращения, будет казаться, что плоскость колебаний маятника

непрерывно смещается в направлении с востока на запад, “за Солнцем”, т.е. по ходу часовой стрелки (рис. 48,6). Но так как плоскость качания маятника не может произвольно менять своего направления, то приходится признать, что в действительности поворачивается под ним Земля в направлении с запада к востоку. За одни звездные сутки плоскость колебаний маятника совершит полный оборот относительно поверхности Земли с угловой скоростью w = 15° в звездный час. На южном полюсе Земли маятник совершит за 24 звездных часа также один оборот, но против часовой стрелки.

Рис 49. К маятнику Фуко

Если маятник подвесить на земном экваторе и ориентировать плоскость его качания в плоскости экватора, т. е. под прямым yглом к меридиану l (рис. 48), то наблюдатель не заметит смещения плоскости его колебаний относительно земных предметов, т.е. она будет казаться неподвижной и оставаться перпендикулярной к меридиану. Результат не изменится, если маятник на экваторе будет колебаться в какой-либо другой плоскости. Обычно говорят, что на экваторе период вращения плоскости колебаний маятника Фуко бесконечно велик. Если маятник Фуко подвесить на широте j , то его колебания будут происходить в плоскости, вертикальной для данного места Земли. Вследствие вращения Земли наблюдатeлю будет казаться, что плоскость колебаний маятника поворачивается вокруг вертикали данного места. Угловая скорость этого поворота wj равна проекции вектора угловой скорости вращения Земли w на вертикаль в данном месте О (рис. 49), т.е. wj = w sin j = 15° sin j . Таким образом, угол видимого поворота плоскости колебаний маятника относительно поверхности Земли пропорционален синусу географической широты. В Ленинграде плоскость колебаний маятника поворачивается в час приблизительно на 13°, в Москве – на 12°,5. Фуко поставил свой опыт, подвесив маятник под куполом Пантеона в Париже. Длина маятника была 67 м, вес чечевицы – 28 кГ. В 1931 г. в Ленинграде в здании Исаакиевского собора был подвешен маятник длиной 93 м и весом 54 кГ. Амплитуда колебаний этого маятника равна 5 м, период – около 20 секунд. Острие его чечевицы при каждом следующем возвращении в одно из крайних положений смещается в сторону на 6 мм. Таким образом, за 1-2 минуты можно убедиться в том, что Земля действительно вращается вокруг своей оси.

Вторым следствием вращения Земли (но менее наглядным) является отклонение падающих тел к востоку. Этот опыт основан на том, что чем дальше находится точка от оси вращения Земли, тем больше ее линейная скорость, с которой она перемещается с запада на восток вследствие вращения Земли. Поэтому вершина высокой башни В перемещается к востоку с большей линейной скоростью, нежели ее основание О (рис. 50). Движение тела, свободно падающего с вершины башни, будет происходить под действием силы притяжения Земли с начальной скоростью вершины башни. Следовательно, прежде чем упасть на Землю, тело будет двигаться по эллипсу, и хотя скорость его движения постепенно увеличивается, упадет оно на поверхность Земли не у основания башни, а несколько обгонит его, т.е. отклонится от основания в сторону вращения Земли, к востоку. В теоретической механике для расчета величины отклонения тела к востоку х получена формула где h – высота падения тела в метрах, j – географическая широта места опыта, а х выражено в миллиметрах. В настоящее время вращение Земли непосредственно наблюдается из космоса.

§ 72. Прецессионное и нутационное движение земной оси

Если бы Земля имела форму шара, однородного или состоящего из сферических слоев равной плотности, и являлась бы абсолютно твердым телом, то согласно законам механики направление оси вращения Земли и период ее вращения оставались бы постоянными на протяжении любого промежутка времени.

Однако Земля не имеет точной сферической формы, а близка к сфероиду (см. § 62). Притяжение же сфероида каким-либо материальным телом L (рис. 51) складывается из притяжения F шара, выделенного внутри сфероида (эта сила приложена к центру сфероида), притяжения F1 ближайшей к телу L половины экваториального выступа и притяжения F2 другой, более далекой, половины экваториального выступа. Сила F1 больше силы F2 и поэтому притяжение тела L стремится повернуть ось вращения сфероида РNРS так, чтобы плоскость экватора сфероида совпала с направлением TL (на рис. 51 против часовой стрелки). Из механики известно, что ось вращения PNPS в этом случае будет перемещаться в направлении, перпендикулярном к плоскости, в которой лежат силы F1 и F2 .

На экваториальные выступы сфероидальной Земли действуют силы притяжения от Луны и от Солнца. В результате ось вращения Земли совершает очень сложное движение в пространстве. Прежде всего, она медленно описывает вокруг оси эклиптики конус, оставаясь все время наклоненной к плоскости движения Земли под углом около 66° 33' (рис. 52). Это движение земной оси называется прецессионным, период его около 26 000 лет. Вследствие прецессии земной оси полюсы мира за тот же период описывают вокруг полюсов эклиптики малые круги радиусом около 23° 27'. Прецессия, вызываемая действием Солнца и Луны, называется лунно-солнечной прецессией. Кроме того, ось вращения Земли совершает различные мелкие колебания около своего среднего положения, которые называются нутацией земной оси. Нутационные колебания возникают потому, что прецессионные силы Солнца и Луны (силы F1 и F2 ) непрерывно меняют свою величину и направление; они равны нулю, когда Солнце и Луна находятся в плоскости экватора Земли и достигают максимума при наибольшем удалении от него этих светил. Самое главное нутационное колебание земной оси имеет период в 18,6 года, равный

периоду обращения лунных узлов (см. § 76). Вследствие этого движения земной оси полюсы мира описывают на небесной сфере эллипсы, большие оси которых равны 18”,42, а малые – 13'', 72. В результате прецессии и нутации земной оси полюсы мира в действительности описывают на небе сложные волнистые линии. Притяжение планет слишком мало, чтобы вызвать изменения в положении оси вращения Земли, но оно действует на движение Земли вокруг Солнца, изменяя положение в пространстве плоскости земной орбиты, т.е. плоскости эклиптики. Эти изменения положения плоскости эклиптики называются планетной прецессией, которая смещает точку весеннего равноденствия к востоку на 0”, 114 в год.

§ 73. Следствия прецессионного движения земной оси

Как уже было сказано, вследствие прецессионного движения земной оси полюсы мира за 26 000 лет описывают вокруг полюсов эклиптики круги радиусом приблизительно в 23°,5. Но так как полюсы эклиптики также перемещаются по небесной сфере (прецессия от планет), то кривые, описываемые полюсами мира, не замыкаются. На рис. 53 показано прецессионное движение северного полюса мира среди звезд. В настоящее время северный полюс мира находится вблизи звезды a Малой Медведицы, почему эта звезда и называется Полярной. Но 4000 лет назад ближе всех к северному полюсу мира была звезда a Дракона, а через 12 000 лет “полярной звездой” станет a Лиры (Вега). Вместе с изменением направления оси мира меняется и положение небесного экватора, плоскость которого перпендикулярна к этой оси и параллельна плоскости земного экватора. Плоскость эклиптики также несколько меняет свое положение в пространстве вследствие прецессии от планет. Поэтому точки пересечения небесного экватора с эклиптикой (точки равноденствий) медленно перемещаются среди звезд к западу. Скорость этого перемещения за год называется общей годовой прецессией в эклиптике.

Общая годовая прецессия в экваторе m = 50»,26 cos e = 46”,11, где e – наклонение эклиптики к экватору, которое в настоящее время медленно уменьшается (на 0»,47 в год), но через несколько тысяч лет уменьшение сменится столь же медленным увеличением, так как это возмущение (прецессия от планет) имеет периодический характер. В начале нашей эры точка весеннего равноденствия находилась в созвездии Овна, а точка осеннего равноденствия – в созвездии Весов. Равноденственные точки обозначались тогда знаками этих созвездий ^ и d соответственно. С тех пор точка весеннего равноденствия переместилась в созвездие Рыб, а точка осеннего равноденствия – в созвездие Девы, но их обозначения остались прежними.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.