Джордан Элленберг - Как не ошибаться. Сила математического мышления Страница 6
Джордан Элленберг - Как не ошибаться. Сила математического мышления читать онлайн бесплатно
Сначала я работал над теорией чисел в ее классическом виде, доказывая факты о суммах четвертых степеней целых чисел, о которых я при необходимости мог рассказать членам своей семьи на День благодарения, даже если мне и не удавалось объяснить им, как именно я доказал то, что доказал. Но вскоре я увлекся еще более абстрактными областями, изучая задачи, основные элементы которых («остаточно модулярные представления Галуа», «когомология модулярных схем», «динамические системы однородных пространств») невозможно было обсуждать за пределами архипелага университетских аудиторий, коридоров и комнат отдыха, раскинувшегося в водах Оксфорда, Принстона, Киото, Парижа и Мэдисона (штат Висконсин), где я сейчас преподаю. Если я назову все перечисленное волнующим, имеющим смысл и прекрасным и скажу вам, что мне никогда не надоедает размышлять над этими темами, вам придется просто поверить мне, поскольку требуется длительное обучение даже для того, чтобы выйти на уровень, на котором эти объекты изучения попадают в ваше поле зрения.
Но затем произошло нечто интересное. Чем более абстрактными и далекими от реальной жизни становились мои исследования, тем чаще я начал замечать, как много математики присутствует во внешнем мире, за стенами этого убежища. Речь идет не о представлениях Галуа или когомологиях, а о более простых, древних и не менее глубоких понятиях, попадающих в верхний левый сектор нашей таблицы математических концепций. Я начал писать для газет и журналов статьи о том, как выглядит мир сквозь призму математики, и, к своему удивлению, обнаружил, что их охотно читают даже люди, твердящие, как они ненавидят математику. Это было своего рода обучение математике, но обучение, весьма отличающееся от обычных занятий.
Но у такого подхода есть нечто общее с обычными занятиями. Это кое-какие задания, которые предстоит выполнить читателям. Давайте вернемся к эссе фон Неймана «Математик»:
Разобраться в устройстве самолета и понять природу сил, поднимающих самолет в воздух и приводящих его в движение, труднее, чем лететь в салоне самолета, подниматься в нем в заоблачную высь, покрывать огромные расстояния, и даже труднее, чем управлять самолетом.
Только в исключительных случаях процесс удается понять, не научившись применять его практически, руководствуясь инстинктом и опытом[18].
Другими словами, довольно трудно понять математику, не решая математических задач. Царской дороги в геометрии нет, как сказал Евклид Птолемею или – в зависимости от вашего источника – Менехм Александру Македонскому. (Надо признать, популярные изречения, приписываемые древним, вполне возможно, им не принадлежат, но это не делает их менее поучительными.)
В этой книге я не собираюсь вставать в позу и делать величественные жесты в сторону великих математических памятников, не буду учить вас восхищаться ими с большого расстояния. Нам предстоит с головой погрузиться в работу. Мы с вами сделаем кое-какие вычисления. Чтобы донести ту или иную мысль, мне придется, когда это понадобится, прибегать к помощи кое-каких формул и уравнений. Вам не понадобится никаких формальных математических знаний, кроме знаний арифметики, но в то же время вы узнаете о математике многое из того, что выходит за пределы арифметики. Я привожу здесь ряд упрощенных графиков и таблиц. Мы с вами встретим некоторые темы из школьной математики, но вне их обычной среды обитания. Мы узнаем, как тригонометрические функции описывают степени взаимозависимости между двумя переменными, что говорит математический анализ о соотношении между линейными и нелинейными явлениями, а также каким образом формула корней квадратного уравнения служит в качестве когнитивной модели научного познания. Кроме того, мы встретим здесь некоторые математические концепции, изучение которых обычно откладывается до колледжа или до университета. В частности, мы поговорим о таких вещах, как кризис в теории множеств, выступающий здесь в качестве метафоры для судебной практики Верховного суда и судейства в бейсболе; последние достижения в аналитической теории чисел, подтверждающие наличие взаимосвязи между структурой и случайностью; теория информации и комбинаторные схемы, позволяющие объяснить, как несколько студентов MIT выиграли миллионы долларов, разобравшись во внутреннем механизме лотереи штата Массачусетс.
В книге вы найдете рассказы об известных математиках, а также некоторые философские рассуждения. Представлены даже пара доказательств. Зато нет ни домашних заданий, ни тестов.
Часть I
Линейность
Кривая Лаффера
Суть математического анализа, изложенного на одной странице
Закон больших чисел
Некоторые аналогии с терроризмом
«Все американцы к 2048 году будут страдать избыточным весом»
Почему в Южной Дакоте заболеваемость раком мозга выше, чем в Северной Дакоте
Призраки усопших величин
Привычка определять
Глава первая
Стоит ли уподобляться Швеции
Несколько лет назад, в разгар дебатов вокруг «Закона о доступной медицинской помощи», Дэниел Митчелл из либертарианского Института Катона опубликовал в своем блоге статью с провокационным заголовком «Почему Обама пытается сделать Америку больше похожей на Швецию, тогда как сами шведы пытаются быть в меньшей степени шведами?»{13}.
Хороший вопрос! Скажем как можно мягче: это действительно кажется несколько странноватым. Почему, господин президент, мы плывем против течения истории, тогда как во всем мире страны с высоким уровнем социального обеспечения (даже богатая маленькая Швеция!) сокращают дорогостоящие социальные льготы и высокие налоги? «Если шведы извлекли уроки из собственных заблуждений и теперь пытаются сократить объем и границы государственного управления, то почему американские политики так стремятся повторять их ошибки?» – пишет Митчелл.
Ответ на этот вопрос требует построения в высшей степени научного графика. Вот как выглядит мир в понимании Института Катона.
Ось x отображает здесь меру «шведскости»[19], а ось y – некую меру благосостояния. Не имеет значения, в каких именно единицах отображены эти показатели. Суть вот в чем: согласно этому графику, чем выше у вас мера шведскости, тем в худшей ситуации находится ваша страна. Шведы, люди далеко не глупые, поняли это и начали двигаться по графику в северо-западном направлении, к благосостоянию, которое обеспечивает свободный рынок. Однако Обама движется не в том направлении.
Позвольте мне нарисовать эту же картину с точки зрения людей, экономические взгляды которых ближе к мнению Обамы, а не Института Катона.
Этот график дает совсем другие рекомендации по вопросу, в какой степени нам следует походить на Швецию. Где мы видим максимальный уровень благосостояния? В точке, в которой мера шведскости больше, чем в Америке, но меньше, чем в Швеции. Если это действительно так, тогда совершенно логично, что Обама увеличивает объем социального обеспечения, тогда как шведы сокращают его.
Разница между этими двумя графиками сводится к различиям между линейностью и нелинейностью[20], одному из основных разграничений в математике. Линия на графике Катона – это прямая[21], тогда как линия на втором графике (с горбом посередине) не является прямой. Прямая – это один, но не единственный тип линий, причем прямые могут иметь самые разные свойства, которых может и не быть у других линий. Самая высокая точка отрезка прямой (в данном примере – максимальный уровень благосостояния) должна находиться либо на одном конце, либо на другом. Такова природа прямых линий. Если снижение налогов способствует росту благосостояния, то чем ниже налоги, тем лучше. Следовательно, если шведы хотят расшведиться, так же должны поступить и мы. Безусловно, противники точки зрения Института Катона могут утверждать, что эта прямая наклонена в другом направлении и проходит с юго-запада на северо-восток. В таком случае объем расходов на социальное обеспечение не может быть слишком большим, а оптимальная политика сводится к тому, чтобы обеспечить максимальный уровень шведскости.
Как правило, когда кто-то заявляет, будто не относится к числу людей, мыслящих линейно, то очень скоро он начнет просить у вас прощения за потерю того, что вы ему одолжили на время. Однако нелинейность действительно существуxет! А в данном контексте мыслить нелинейно крайне важно, поскольку не все линии бывают прямыми. Поразмышляв немного, вы поймете, что графики реальных экономических показателей напоминают второй, а не первый рисунок. Это кривые линии. Логика рассуждений Митчела являет собой пример ложной линейности – не заявляя об этом в явной форме, он исходит из того, что динамику благосостояния описывает отрезок прямой, изображенный на первом рисунке. В таком случае, если Швеция сокращает свою социальную инфраструктуру, значит, нам следует сделать то же самое.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.