Сергей Викторов - Химия лунного грунта Страница 6
Сергей Викторов - Химия лунного грунта читать онлайн бесплатно
Визуальные наблюдения астронавтов на окололунной орбите могут быть объяснены рассеянием света пылевой средой, простирающейся за пределы орбиты корабля (120 км). Наиболее вероятные размеры частиц пыли оцениваются в 0,1 мкм. Результаты описанных наблюдений дают хорошее согласие с данными «Лунохода-2».
Каким же образом попадают частицы лунного грунта на такие высоты? Каковы механизмы подъема и переноса лунного вещества?
Однозначного ответа ученые пока не нашли. Наиболее вероятным считается так называемый электростатический механизм. В одном из вариантов этого механизма учитывается горизонтальный перенос лунной пыли, выбитой с поверхности ударами микрометеоритов, в слабом электрическом поле. Это поле образуется при ионизации атомов грунта под воздействием ультрафиолетового излучения Солнца, и его величина достаточна для поддержания во взвешенном состоянии небольших заряженных пылинок. Удары микрометеоритов разрушают материал поверхности и выбивают частицы пыли — мельчайшие из них ускоряются в электрическом поле и ускользают в межпланетное пространство, преодолев притяжение Луны, наиболее крупные частицы материала опускаются в непосредственной окрестности падения микрометеорита, и только часть изверженного материала имеет массу, пригодную для переноса силами электрического поля. Эти частицы движутся за счет горизонтальной составляющей начальной скорости, «подпрыгивая» в электростатическом поле Луны. Время их жизни в полете над освещенной плоской равниной оценивается от 4 до 300 ч.
Другой вариант электростатического механизма «работает» только в зоне терминатора.[2] При прохождении последнего по лунной поверхности отдельные мелкие возвышенности (бугорки, камни и т. д.) остаются частично освещенными довольно длительное время, а соседние участки находятся в тени. На границе между освещенной и совершенно темной областями при взаимодействии рентгеновского и ультрафиолетового излучений Солнца с лунной поверхностью возникают электрические поля, причем значительно более сильные, чем в рассмотренном выше варианте. Эти поля могут поднимать мельчайшие заряженные частицы лунного грунта на некоторую высоту. Дальнейшее свое движение пылинки совершают уже под действием гравитационных сил, например, перемещаясь вниз по склонам и засыпая дно кратеров. В пользу рассмотренного механизма говорит такой факт: когда интенсивность рентгеновского излучения Солнца возрастала (а это должно приводить к увеличению количества пылинок над лунной поверхностью, которые рассеивают видимый солнечный свет), то возрастала и интенсивность свечения лунного горизонта, измеренного «Сервейерами».
До настоящего времени непосредственная проверка в лунных условиях предложенных электростатических механизмов не проводилась. В лабораторных условиях на Земле велось экспериментальное моделирование некоторых сторон этого процесса, причем на аналогах лунного грунта и на натуральных образцах лунного вещества подтверждена возможность электростатического переноса. Возникли, однако, принципиальные трудности, связанные с невозможностью обеспечения в модельных экспериментах тех же условий, что и на Луне (в частности, очень высокого вакуума, необходимого для реализации электростатических эффектов). Поэтому проведенные к настоящему времени лабораторные исследования не являются достаточно полными и не привели к определенным количественным выводам. В связи с этим представляется целесообразным обсудить ряд экспериментов, выполнение которых в лунных условиях позволило бы определенно судить об эффективности электростатического механизма переноса.
При переносе вещества резкая граница между двумя соседними поверхностями должна размываться, а частицы — перемешиваться. Изменение некоторых свойств этих поверхностей, например химического состава, радиоактивности, оптических характеристик, как раз и может быть определено количественно, в частности для двух смежных естественных разнородных поверхностей, которыми являются лунные «моря» и «материки» (изучению подлежат свойства типичного «моря», типичного «материка» и переходной зоны между ними).
Подобные исследования начались экспериментами на «Луноходе-2». При этом был успешно применен рентгеновский флуоресцентный метод анализа грунта, использование которого для этих целей кажется весьма перспективным.
Однако изучение границы естественных разнородных поверхностей весьма затруднительно из-за отсутствия точных данных об их первоначальных свойствах и о времени начала процесса переноса. Значительно более информативными представляются исследования «размытия» границ между разнородными материалами.
Возможен такой ход исследования. На лунный грунт помещается некоторое «пятно» (или группа «пятен») «искусственного» грунта с четкими границами. Затем через определенные промежутки времени производится исследование «размытия» границы двух разнородных поверхностей на основании комплексного изучения изменений области раздела. Количество и характер распределения частиц «искусственного» грунта на окружающей поверхности служат мерой скорости переноса. При этом механические и электрические свойства этого грунта не должны сильно отличаться от «лунных». Вещество не должно изменять своих характеристик при длительном пребывании на Луне в условиях глубокого вакуума, космической радиации, резких перепадов температуры, а также отвечать требованиям, вытекающим из особенностей доставки этого вещества на Луну, упаковки и способа нанесения на поверхность.
Наряду с этими экспериментами важно продолжать систематические исследования оптических эффектов в окололунном пространстве. Причем регистрацию свечения лунного горизонта желательно проводить при различных вариантах расположения аппаратуры относительно деталей рельефа, а визуальные наблюдения орбитальных восходов Солнца необходимо контролировать приборами.
Кроме того, наблюдения яркости лунного горизонта целесообразно проводить в течение длительных промежутков времени как в ночных, так и в дневных условиях. В ночное же время можно исследовать и эффекты взаимодействия метеоритных тел с лунной поверхностью, регистрируя возникающие при этом оптические вспышки. Возможны и другие эксперименты, например с использованием системы детекторов для определения направления и величины импульса частиц лунного реголита, приведенных в движение электростатическим или иным механизмом.
Экспериментальные исследования явлений переноса вещества на лунной поверхности позволят выяснить роль Солнца в эволюции рельефа Луны, а также помогут ответить на вопрос, почему обратная сторона Луны, сплошь покрытая кратерами и «материковыми» возвышенностями, так разительно отличается от видимой стороны Луны, значительную часть которой занимают «морские» низменности? Таким образом, проблема переноса вещества на лунной поверхности, являющаяся частью более общей проблемы — формирования лунного рельефа, — безусловно, займет соответствующее место в последующих экспериментальных исследованиях Луны.
ИЗМЕРЕНИЯ С ПОМОЩЬЮ АППАРАТОВ «СЕРВЕЙЕР»
Запуски американских аппаратов типа «Сервейер» имели целью не только измерение химического состава грунта — планировалось и изучение лунного рельефа, гравитационного поля Луны, а также различных физических условий на лунной поверхности. Осуществление этой программы началось в 1966 г., когда «Сервейер-1» совершил мягкую посадку в Океане Бурь и передал на Землю изображения лунной поверхности. С помощью прилунившегося в апреле 1967 г. «Сервейера-3» проводилось (помимо телевизионной съемки поверхности) определение механических свойств грунта. Запуски «Сервейера-2 и -4» окончились неудачей.
Последние три аппарата этой серии — «Сервейер-5, -6 и -7», запущенные в 1967–1968 гг., передали цветное изображение лунной поверхности, исследовали механические свойства лунного грунта, а также произвели определение в нем содержания ряда элементов методом «обратно рассеянных альфа-частиц».
Суть этого метода в следующем. Альфа-частицы, испущенные радиоактивными источниками, при столкновениях с ядрами атомов испытывают рассеяние, причем энергия рассеянных частиц зависит от сорта ядер и от угла, под которым вылетела рассеянная частица. Если облучить какое-либо вещество альфа-частицами строго определенной энергии и установить (под фиксированным углом) счетчик рассеянных частиц, то он будет регистрировать альфа-частицы лишь определенных энергий, соответствующих наличию в изучаемом веществе тех или иных химических элементов, т. е. будет получен определенный спектр альфа-частиц. В действительности же, из-за особых свойств радиоактивных источников и счетчиков спектр будет состоять не из линий, а из «обрывов», соответствующих положению этих линий (рис. 5). По положению «обрывов» и определяют, какие элементы присутствуют в исследуемом образце.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.