Вилен Барабой - Солнечный луч Страница 6

Тут можно читать бесплатно Вилен Барабой - Солнечный луч. Жанр: Научные и научно-популярные книги / Прочая научная литература, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Вилен Барабой - Солнечный луч читать онлайн бесплатно

Вилен Барабой - Солнечный луч - читать книгу онлайн бесплатно, автор Вилен Барабой

С02 + 2Н20 + свет -> 02 + Н20 + (СН20) + 112 ккал.

Иными словами, в органических соединениях, синтезированных из одной грамм-молекулы углекислоты, запасается 112 ккал энергии.

Фотосинтез — сложный, многоступенчатый процесс, детали которого не полностью расшифрованы поныне. Состоит он из большого количества последовательных этапов, реакций. Реакции эти можно подразделить на два типа: одни осуществляются под непосредственным влиянием поглощенного света, другие — в темноте. Непременным участником световых, фотохимических реакций являются вещества, избирательно поглощающие излучение определенной длины волны. Если фотохимическая реакция активируется видимым светом, для ее осуществления нужно красящее вещество, пигмент. В реакциях фотосинтеза эту роль выполняет хлорофилл. Важная способность фотохимических реакций: их скорость практически не зависит от температуры среды, в которой они протекают. И это естественно: поглотив порцию солнечных лучей, хлорофилл не нуждается больше в притоке энергии, чтобы начать процесс фотосинтеза.

Реакции фотосинтеза, протекающие в темноте, называют темповыми, химическими (без приставки «фото»). Эти реакции регулируются и управляются белковыми катализаторами — ферментами. Каждая последующая реакция фотосинтеза для своего осуществления нуждается в присутствии специального фермента. Скорость темновых, как и всех вообще химических реакций, зависит от температуры и при ее повышении на 10° С возрастает в два-три раза.

Процесс фотосинтеза начинается с поглощения света хлорофиллом. Это замечательное вещество, к свойствам которого мы будем еще неоднократно возвращаться. По своему составу хлорофилл очень близок к тему — красящему веществу гемоглобина крови и переносчику кислорода. Структурной основой обоих служат порфирины — вещества, которые, как говорилось в предыдущем разделе, могут при определенных условиях образовываться абиогенно. Следовательно, фотосинтез на древней Земле мог явиться закономерным итогом естественного хода событий и, в свою очередь, открыл новую главу в эволюции земной жизни.

Активный центр хлорофилла (и тема) состоит из порфириновых группировок. Но если у гемоглобина в центре активной группы расположен атом железа, то в хлорофилле эту роль выполняет атом магния. Молекула хлорофилла в целом выполняет две функции: поглощает порцию солнечной энергии и затем передает ее строго по назначению. Функцию улавливания энергии света выполняют порфириновые кольца, тогда как атом магния выступает в качестве посредника и катализатора в фотохимической реакции разложения воды на атомы водорода и кислорода. Кислород уходит в атмосферу, а атомы водорода, снабженные при освобождении запасом энергии, постепенно расходуют ее, проходя лестницу темповых реакций.

В растениях имеется несколько видов хлорофилла, из которых главные два — хлорофилл а и хлорофилл б. Поглощают хлорофиллы не все видимые глазом лучи Солнца, а главным образом красные и синие лучи. Максимумы поглощения света для хлорофилла а лежат в области 400—440 и 630—600 нм (1 нм = 10-9 м), для хлорофилла б — в области 440—470 и 620—650 нм. Хлорофилл плохо поглощает зеленые лучи, но зато он хорошо их отражает и рассеивает, поэтому те части растений, которые содержат хлорофилл, имеют зеленую окраску. В зеленых частях растения содержатся и желтые пигменты — каротиноиды, которые хорошо поглощают синие лучи. Есть основания полагать, что каротиноиды передают поглощенную энергию хлорофиллу либо наряду с ним участвуют в фотохимических реакциях процесса фотосинтеза (рис. 2).

Все химические реакции, совершающиеся самопроизвольно, идут с потерей энергии. Чем больше величина отданной энергии, тем прочнее, устойчивее образовавшееся вещество. В процессе фотосинтеза совершается последовательный ряд реакций, общее направление которых противоположно естественному сродству атомов. При помощи энергии солнечного света растение преодолевает силы связи между водородом и кислородом в молекулах воды, между кислородом и углеродом в углекислоте. Образующиеся при этом активные продукты (атомы кислорода, водорода, гидроксильные ионы и др.) стремятся, отдав избыточную энергию, вновь соединиться. Если бы реакции фотосинтеза происходили в растворе или в другой простой среде, обратные реакции сводили бы на нет результаты основного процесса. В зеленом растении этого не происходит, так как образующиеся активные продукты с момента своего возникновения пространственно разделены. Каждый из них проходит свою цепочку превращений.

Рис. 2. Спектры поглощения каротиноидов (1) и хлорофиллов (2)

Водород и углерод как бы движутся навстречу друг другу по ступенькам темновых реакций.

Для пространственного разделения основных активных продуктов и путей их обмена зеленое растение в ходе эволюции выработало сложный аппарат — систему мембран, своего рода органы фотосинтеза. Пигменты, участвующие в фотосинтезе, сосредоточены внутри клеток в хлоропластах, имеющих правильную пластинчатую структуру. Под микроскопом хорошо видно, что и в пластинках есть правильно чередующиеся структурные элементы — диски. Диски состоят из чередующихся слоев белковых и жироподобных (липоидных) веществ (рис. 3). Молекулы хлорофилла, связанные с веществами белково-липоидного комплекса, образуют с ними единую мембранную структуру.

На первой, фотохимической, стадии процесса происходит захват, поглощение энергии света (рис. 4).

Рис. 3. Схема строения граны хлоропласта. Между монослоями белка (1) лежат отдельные молекулы хлорофилла (2) и слои фосфолипидов (3)

Каждая молекула хлорофилла а поглощает по одному кванту света. Поглощенная энергия кванта передается одному из электронов, который благодаря избытку энергии отдаляется от молекулы. Чем больше запас энергии возбужденного электрона, тем на большее расстояние он отдаляется. Но в обычных условиях состояние возбуждения кратковременно. Через десяти- или стомиллионную долю секунды возбужденный электрон возвращается на свое место, отдав избыточную энергию в виде кванта излучения.

В условиях сложной структуры фотосинтетического аппарата растений возбужденный электрон не возвращается на место, а захватывается вместе с избытком энергии особым железосодержащим белком — ферредоксином. Затем электрон передается на пиридиннуклеотиды — вещества, играющие в клетке роль переносчиков водорода. Вслед за электроном пиридиннуклеотиды принимают положительно заряженный ион водорода, образующийся в результате расщепления молекул воды. Второй осколок молекулы воды — отрицательно заряженный ион гидроксила — участвует в реакциях, регулируемых хлорофиллом б. Ион водорода и электрон образуют атом водорода.

Пиридиннуклеотиды используют в дальнейшем водород для частичного восстановления углерода в молекуле углекислоты.

Другие электроны молекул хлорофилла а, возбужденные квантами солнечного света, проходят иную цепочку превращений, и в конце концов их избыточная энергия расходуется на образование богатых энергией молекул аденозинтрифосфорной кислоты — АТФ. В результате поглощенная хлорофиллом энергия солнечного света превращается в энергию химических соединений, в форму привычных для организма, «удобоваримых» переносчиков энергии и электронов, таких, как АТФ и пиридиннуклеотиды.

Дальнейшие их превращения идут уже по обычным биохимическим законам. В результате потери электронов в активных слоях хлоропластов, содержащих молекулы хлорофилла я, образуются электронные вакансии — дырки, которые стремятся поглотить электрон из любого источника. В процессе фотосинтеза таким источником является вода. При ее расщеплении наряду с положительными ионами водорода образуются отрицательно заряженные, несущие избыточный электрон ионы гидроксила. Молекула хлорофилла б после поглощения кванта света передает возбужденный электрон через особую цепочку реакций молекуле хлорофилла а, а свою структуру восстанавливает за счет электрона гидроксильного иона. Гидроксилы, потеряв избыточный электрон, взаимодействуют между собой, образуя перекись водорода, которая разлагается на воду и свободный кислород, уходящий в атмосферу.

Итак, при участии двух форм хлорофилла и двух фотохимических реакций в хлоропластах растений от воды к пиридиннуклеотидам и АТФ проходит «сквозной поток» электронов, приводимый в движение энергией света. Навстречу ему идет поток превращений углекислоты, поглощенной растением из воздуха, который целиком складывается из темновых реакций. Согласно представлениям американского ученого, лауреата Нобелевской премии М. Кальвина, молекула углекислоты присоединяется в процессе фотосинтеза к рибулезодифосфату (РДФ) — веществу, содержащему пять атомов углерода. Образующееся шестиуглеродное соединение распадается на две молекулы фосфоглицериновой кислоты, содержащие по три атома углерода. Так, с самого начала превращений углекислота оказывается включенной в состав углеродной цепи в виде карбоксильной группы СООН.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.