Фрэнк Вильчек - Красота физики. Постигая устройство природы Страница 7

Тут можно читать бесплатно Фрэнк Вильчек - Красота физики. Постигая устройство природы. Жанр: Научные и научно-популярные книги / Прочая научная литература, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Фрэнк Вильчек - Красота физики. Постигая устройство природы читать онлайн бесплатно

Фрэнк Вильчек - Красота физики. Постигая устройство природы - читать книгу онлайн бесплатно, автор Фрэнк Вильчек

Из рисунка мы можем сделать вывод, что Пифагор слушает, как изменяется звук его инструмента, когда он меняет два различных параметра. Зажимая струну в разных точках, он может варьировать рабочую длину вибрирующей части, а изменяя груз, который натягивает струну, он может менять ее натяжение

Гармония, число и длина: поразительная связь

Первое правило Пифагора устанавливает соотношение между длиной вибрирующей струны и нашим восприятием ее тона. Оно гласит, что две одинаковые струны с одним и тем же натяжением издают вместе приятный звук, когда длины струн пропорциональны небольшим целым числам. Так, например, когда соотношение длин составляет 1:2, тональности формируют октаву. При соотношении 2:3 мы слышим доминантовую квинту, а при 3:4 – мажорную кварту. В музыкальном нотном письме (в регистре «до») это соотносится с тем, что одна за другой проигрываются две ноты до различных диапазонов, до и соль или до и фа соответственно. Такие комбинации тональностей привлекательны для людей. Они стали основой классической и большей части народной музыки, а также поп– и рок-музыки.

Применяя правило Пифагора, мы должны понимать под длиной струны ее рабочую длину, т. е. длину той части струны, которая в действительности вибрирует. Зажимая струну и таким образом создавая мертвую зону, мы можем поменять тональность. Гитаристы и виолончелисты пользуются этой возможностью, зажимая струны пальцами левой руки. Делая это, они, зная об этом или нет, призывают к жизни Пифагора. На рисунке мы видим, как Пифагор подбирает рабочую длину струны, используя заостренные зажимы, которые нужны для того, чтобы добиться точности в измерениях. Когда звуки звучат вместе хорошо, мы говорим, что они находятся в гармонии или созвучны. Таким образом, Пифагор открыл, что та гармония звуков, которую мы ощущаем, отражает отношения, которые имеют место, казалось бы, в совершенно другом мире – в мире чисел.

Гармония, число и вес: поразительная связь

Второе правило Пифагора связано с натяжением струны. Нужное натяжение можно получить управляемым и хорошо измеряемым способом, отягощая струну грузами различного веса, как это показано на илл. 6. Здесь результат еще более интересен. Звуки находятся в гармонии, если натяжение пропорционально квадратам небольших целых чисел. Более сильное натяжение соответствует более высокой тональности. Так, соотношение натяжений 1:4 создает октаву и т. д. Когда музыканты настраивают свои инструменты перед выступлением, подтягивая или ослабляя струны, поворачивая колки, Пифагор снова возвращается.

Эта вторая закономерность впечатляет куда больше, чем первая, в качестве свидетельства того, что ощущения являются скрытыми числами. Она лучше спрятана, потому что числа должны быть обработаны – если быть точным, возведены в квадрат – до того, как закономерность станет очевидной. Соответственно потрясение от открытия куда сильнее. Также эта закономерность связана с весом предметов. А вес более безошибочно, чем длина, приводит нас к вещам материального мира.

Открытия и мировоззрение

Вот мы и обсудили три главных открытия Пифагора: его теорему о прямоугольных треугольниках и два правила музыкального созвучия.

Все вместе они связывают форму, размер, вес и гармонию общей нитью, которой оказываются числа.

Для пифагорейцев этого триединства открытий было более чем достаточно, чтобы склониться к мистическому мировоззрению. Вибрация струн – это источник музыкального звука. Она представляет собой не что иное, как периодическое движение, т. е. движение, которое повторяется через определенные интервалы времени. Мы также видим, что Солнце и планеты совершают периодические движения по небу, и делаем логический вывод об их периодических движениях в космосе. Таким образом, они тоже должны производить звуки. Эти звуки формируют Музыку сфер, музыку, которая наполняет космос.

Пифагор увлекался пением. Он также заявлял, что действительно слышал Музыку сфер. Некоторые современные ученые строят предположения о том, что исторический Пифагор страдал от тиннитуса, т. е. от шума в ушах. Конечно, с настоящим Пифагором не происходило ничего подобного.

В любом случае более широкий смысл этих открытий состоит в том, что все есть числа и что числа поддерживают гармонию. Пифагорейцы, помешанные на математике, жили в мире, наполненном гармонией.

Послание – в частоте

Я полагаю, что музыкальные правила Пифагора заслуживают того, чтобы считаться первыми количественными законами природы, когда-либо открытыми человеком. (Астрономические закономерности, начиная с регулярной смены дня и ночи, были, конечно, замечены намного раньше. Составление календарей и гороскопов, использование математики для предсказания или воспроизведения имевшего места в прошлом положения Солнца, Луны или планет являлись особыми практическими искусствами задолго до рождения Пифагора. Но эмпирические наблюдения за отдельными объектами весьма отличаются от изучения общих законов Природы.)

Странно поэтому осознавать, что мы до сих пор не понимаем до конца, почему они верны. Сегодня мы намного лучше понимаем физические процессы, связанные с получением, передачей и восприятием звука, но связь между этими знаниями и ощущением «нот, которые звучат хорошо вместе» пока что ускользает от нас. Думаю, по поводу этого существует большое количество многообещающих идей, которые близки к центральному понятию нашей медитации, поскольку (если они верны) проливают свет на важный аспект происхождения нашего чувства красоты.

Наше описание того, как и почему работают правила Пифагора, состоит из трех частей. В первой части звук колеблющейся струны достигает барабанной перепонки в нашем ухе. Во второй – звук, достигший барабанной перепонки, превращается в первичные нервные импульсы. В третьей – первичные нервные импульсы приводят слушателя к ощущению гармонии.

Колебания струны проходят несколько трансформаций, прежде чем достигают нашего мозга как послание. Они воздействуют на окружающий воздух напрямую, просто толкая его. Тем не менее само по себе дрожание отдельной струны достаточно слабое. На практике у музыкального инструмента есть звукоотражающая поверхность – дека, которая в ответ на колебания струны сама вибрирует гораздо сильнее. Движение деки толкает окружающий воздух более чувствительно.

Сотрясение воздуха вокруг струны или деки порождает свое собственное возмущение, которое становится нарастающим: звуковая волна распространяется во всех направлениях. Любая звуковая волна является повторяющимся циклом сжатия и разрежения. Воздух, колеблющийся в каждой точке пространства, оказывает давление на соседние участки, и они тоже начинают колебаться. В конце концов часть этой звуковой волны, пройдя сквозь ухо с его сложной геометрией, неизбежно достигает мембраны, которая называется барабанной перепонкой и находится на глубине нескольких сантиметров в слуховом проходе. Наша барабанная перепонка работает как антипод деки: теперь колебания воздуха вызывают механические движения, а не наоборот.

Колебания барабанной перепонки порождают дальнейшую реакцию, о которой мы сейчас расскажем. Но перед этим мы должны сделать одно простое наблюдение, которое тем не менее является фундаментальным. Может вызвать удивление, как в этот длинном ряду преобразований значимый сигнал, отражающий поведение струны, передается так далеко по цепочке. Дело здесь в том, что во всех этих трансформациях одно свойство сигнала остается неизменным. Число колебаний в единицу времени или, как мы говорим, частота остается одинаковой, независимо от того, была ли это вибрация струны, деки, воздуха или барабанной перепонки – или слуховых косточек, кохлеарной жидкости, базилярной мембраны или волосковых клеток, следующих далее по очереди. Поскольку во время каждой трансформации толчки и натяжения на предыдущей стадии вызывают сжатие и разрежение на следующей, в точном соответствии с изначальным сигналом, то, таким образом, различные виды колебаний оказываются синхронизованными или, как мы говорим, «одновременными». Вследствие этого мы можем ожидать и действительно увидим, что, если мы хотим, чтобы наше восприятие отражало свойства изначальных колебаний, полезно отслеживать частоту тех колебаний, которые в конце концов возникают в наших головах.

Таким образом, первый шаг к пониманию правил Пифагора – это перевод их на язык частот. Сегодня мы можем положиться на уравнения механики, которые позволяют вычислить, как меняется частота колебаний струны, если мы изменим ее длину или натяжение. Используя эти уравнения, мы находим, что частота уменьшается пропорционально длине и возрастает пропорционально квадрату натяжения. Следовательно, оба правила Пифагора, переведенные на язык частот, передают одно и то же простое утверждение. Они гласят, что ноты звучат хорошо вместе, если их частоты соотносятся как небольшие целые числа.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.