Станислав Славин - Есть ли тайны у растений? Страница 7
Станислав Славин - Есть ли тайны у растений? читать онлайн бесплатно
"Защитные средства растений образуют как бы три линии обороны, рассказывает, доктор сельскохозяйственных наук Л.В.Метлицкий, сотрудник Института биохимии имени А.Н.Баха. - Первая линия - это препятствия, стоящие на пути проникновения паразита в растение. Например, скорость внедрения возбудителя болезни в растительную ткань зависит от формы и размера устьиц. Во второй линии обороны сосредоточены вещества, губительные для попавшего туда врага; они заранее заготовлены в нетронутых инфекцией тканях. Например, такую роль играет кофейная кислота, обладающая заметными антибиотическими свойствами. Кроме того, под действием ферментов она окисляется, в результате чего возникают хиноны - соединения, имеющие еще более сильные антибиотические свойства, чем сама кислота. И наконец, третья линия обороны - защитные вещества, которые образуются лишь при появлении паразитов. К ним, в частности, относятся фитоалексины..."
Термин этот, кстати, предложил немецкий фитоиммунолог К.Мюллер. А происходит он от греческих слов "финон" - растение и "алекс" - отражение атаки. О том, что растение должно иметь какие-то защитные средства против паразитов, предполагал еще в начале нашего века Н.И. Вавилов, основоположник учения о фитоиммунитете.
Так вот, тот же картофель, томаты и другие представители семейства пасленовых, кроме оружия, так сказать, физического, способны применять против вредителей и оружие химическое, а также биологическое. В ответ, например, на заражение грибком растения тотчас образуют два фитоалексина из класса терпеноидов: ришетин и любимин. Первый был открыт японскими исследователями и назван по сорту картофеля Ришери, в котором это соединение впервые обнаружили. Ну а второй - любимин - был впервые найден отечественными исследователями из лаборатории Метлицкого в клубнях сорта Любимец.
Отсюда, понятно, и название.
Тот или иной фитоалексин может образовываться для защиты от самых разных паразитов. И если его концентрация достаточно велика, то незванные пришельцы погибнут без всякого вмешательства человека. Ведь фитоалексины действуют не в одиночку - их образование сопровождается изменением общего обмена веществ в растительной клетке. Например, известно, что возбудитель картофельной болезни фитофторы нуждается в холестерине. Сам паразит синтезировать это вещество не может, черпает его в готовом виде из картофеля. Но как только в клубнях начинают образовываться фитоалексины, синтез холестерина тут же прекращается, паразит вынужден сесть на голодную диету. Уже само по себе это его ослабляет, а тут еще его принимается добивать фитоалексин. И болезнь капитулирует.
Конечно, при этом возникает резонный вопрос: если у растений есть естественные механизмы защиты, то почему тогда работники сельского хозяйства вынуждены применять гербициды и прочие ядохимикаты не только против сорняков, но и против разных паразитов?
Оказывается, защитный механизм срабатывает не всегда. Чтобы запустить процесс образования фитоалексинов, растению нужен внешний толчок. Таким толчком может послужить обработка картофельной плантации микродозами меди - основного на сегодня средства против фитофторы. Но еще лучше, если растения по необходимости сами будут запускать свои защитные механизмы.
Принципиальная возможность для этого имеется. Во многих случаях паразит, попавший в растительную клетку, начинает выделять высокомолекулярные соединения - полипептиды, белки, гликопротеиды. И появление этих соединений может служить своеобразным сигналом: "К обороне будь готов!". Однако и паразиты не лыком шиты. В ходе длительной эволюции они научились маскироваться так, что во многих случаях защита не может распознать вторжения вовремя. А потом уж бывает поздно: с расплодившейся армией паразитов справиться самостоятельно уже не хватает сил.
Поэтому в настоящее время ученые ведут поиски, стараются создать такие микродатчики, которые бы срабатывали столь же оперативно, как срабатывают волоски на листе венериной мухоловки.
Конечно, в данном случае дело в значительной степени осложняется тем обстоятельством, что исследования приходится вести на генетически-молекулярном уровне. Но на дворе все-таки конец XX века, исследователи уже могут оперировать и с отдельными атомами. Так что есть реальная надежда: в начале следующего столетия труженики сельского хозяйства забудут о ядохимикатах и вредителях примерно так же, как в начале нашего века постепенно стали забывать легенды о растениях-людоедах.
И у травы есть нервы?
Работает гидравлика. Итак, мы с вами разобрались, что приверженцев животной пищи в растительном мире достаточно много - несколько десятков, а то и сотен видов. Ну а каков механизм, приводящий в действие их ловушки? Как вообще растения могут двигаться, поднимая и опуская листья как гелиотроп, поворачивая соцветья вслед за светилом подобно подсолнуху, или неустанно разбрасывая во все стороны свои ползучие побеги подобно ежевике или хмелю.
"Уже с первых шагов ему приходилось решать дополнительную задачу по сравнению, скажем, с близкорастущими одуванчиками или крапивой, - пишет о хмеле Владимир Солоухин. - У одуванчика есть, наверное, свои не менее сложные задачи, но все же на первых порах ему нужно просто вырасти, то есть создать розетку листьев, и выгнать трубчатый стебель. Влага ему дана, солнце ему дано, а также дано и место под солнцем. Стой на этом месте и расти себе, наслаждайся жизнью.
Другое дело у хмеля. Едва-едва высунувшись из земли, он должен постоянно озираться и шарить вокруг себя, ища, за что бы ему ухватиться, на какую бы опереться надежную земную опору". И далее: "Естественное стремление всякого ростка расти вверх преобладает и здесь. Но уже после пятидесяти сантиметров жирный, тяжелый побег льнет к земле. Получается, что он растет не вертикально и не горизонтально, а по кривой, по дуге.
Эта упругая дуга может сохраняться некоторое время, но если побег перевалит за метр длины и все еще не найдет, за что ухватиться, то ему волей-неволей придется лечь на землю и ползти по ней. Только растущая, ищущая часть его будет по-прежнему и всегда нацелена кверху. Хмель, ползя по земле, хватается за встречные травы, но они оказываются слабоватыми для него, и он ползет, пресмыкаясь, все дальше, шаря впереди себя чутким кончиком.
Что делали бы вы, очутившись в темноте, если бы вам нужно было бы идти вперед и нашарить дверную ручку?
Очевидно, вы стали бы совершать вытянутой вперед рукой вращательное, шарящее движение. То же самое делает растущий хмель. Его шершавый, как бы сразу прилипающий кончик все время совершает, продвигаясь вперед или вверх, однообразное вращательное движение по часовой стрелке. И если попадется на пути дерево, телеграфный столб, водосточная труба, нарочно подставленный шест, любая вертикаль, нацеленная в небо, хмель быстро, в течение одного дня, взлетает до самого верха, а растущий конец его снова шарит вокруг себя в пустом пространстве..."
Не выяснен вопрос, пишет далее писатель, чувствует ли хмель возможную опору на некотором небольшом расстоянии и ползет ли он в ее сторону.
Практики, впрочем, утверждают, что очень часто хмель как бы чувствует, где ему подставлена опора, и большая часть стеблей направляется именно в ту сторону.
А когда один из стеблей Солоухин специально не захлестнул за шпагат, протянутый от земли до крыши дома, так он, бедняга, в поисках опоры переполз и двор, и лужайку, и помойку, напоминая человека, преодолевающего трясину и уже почти засосанного ею.
Тело его увязает в грязи и воде, но голову он из последних сил старается держать над водой.
"Я бы сказал тут, - заключает свой рассказ писатель, - кого еще мне напомнил этот хмель, если бы не было опасности переключиться от невинных заметок о траве в область психологического романа".
Литератор побоялся возникших у него невольных ассоциаций, а вот ученые, как мы убедимся чуть позднее, нет. Но прежде давайте задумаемся вот над каким вопросом: "А что за сила гонит хмель и другие растения в рост, заставляет их изгибаться в том или ином направлении?"
Понятное дело, в мире растений нет стальных пружин или иных упругих элементов, чтобы с их помощью защелкивать свои "капканы". Поэтому чаще всего растения используют в таких случаях гидравлику. Гидравлические насосы и приводы вообще совершают основную работу в растении. Это с их помощью, например, влага поднимается из-под земли до самой макушки, преодолевая порою перепады во многие десятки метров - результат, которого может добиться далеко не всякий конструктор обычных насосов. Причем в отличие от механических природные насосы работают совершенно бесшумно и очень экономно.
Гидравлику же используют растения и для осуществления собственного движения. Вспомните хотя бы ту же "привычку" обыкновенного подсолнуха поворачивать свою корзинку вслед за движением светила. Обеспечивает такое движение опять-таки привод на основе гидравлики.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.