Ирина Богданова - Концепции современного естествознания. Шпаргалки Страница 8

Тут можно читать бесплатно Ирина Богданова - Концепции современного естествознания. Шпаргалки. Жанр: Научные и научно-популярные книги / Прочая научная литература, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Ирина Богданова - Концепции современного естествознания. Шпаргалки читать онлайн бесплатно

Ирина Богданова - Концепции современного естествознания. Шпаргалки - читать книгу онлайн бесплатно, автор Ирина Богданова

Наука откликнулась на новые желания общества: ученые включились в изучение теплоты, занялись теоретическими исследованиями, например, Фурье вывел дифференциальное уравнение теплопроводности, Никола Карно занялся увеличением работоспособности тепловых машин, Клапейрон обратил внимание на исследование свойств газообразного вещества и вывел уравнение состояния газа, физик Клаузиус разработал принцип эквивалентности теплоты и работы, ввел понятия внутренней энергии и взаимопревращения энергии.

Эксперимент стал ведущим средством для проверки жизнеспособности новых теорий. Срок от экспериментальной проверки до технического внедрения сократился до минимального. Классическая механика для этого общества устарела. Она не отвечала духу времени. Сложные явления оказалось невозможным объяснить в позиций классической механики. К таким явлениям относились тепловая энергия и понятие фазового перехода. Не укладывающимися в теорию при изучении теплоты оказались такие факты, как наличие одинаковых следствий при разных причинах и несоответствие состояния атомов состоянию системы в целом. Новая теория получила название термодинамической, а новая картина мира – термодинамической картины мира.

29. Закон сохранения и превращения энергии в механике

В механике существовало понятие механической работы, которое определялось произведением приложенной силы на энергию, необходимую для производства работы: А = F · x. Способов передачи кинетической энергии другому телу в механике было всего два: либо приложение некой силы к другому телу, либо толчок при ударе (откуда и все рассуждения о первотолчке Бога). Если другое тело перемещалось, то полученная им кинетическая энергия растрачивалась полностью. Но в некоторых случаях такая энергия не растрачивалась (сжатие пружины, подъем тела на высоту), а накапливалась (например, как в сжатой пружине). Накопленная, но не использованная энергия называлась потенциальной.

Потенциальная энергия, по современным понятиям, накапливается в составляющих тело мельчайших частицах. Механика не занималась состоянием частиц, она ограничивалась признанием того, что потенциальной энергией обладают деформированные тела, застрявшие в процессе деформации. Величина потенциальной энергии в механике определяется величиной работы, которую данное тело может совершить, приходя в равновесное состояние с системой тел (разжавшаяся пружина, опущенный вниз груз).

Расчет был верен при соблюдении двух условий: изолированности всей системы и ее консервативности (то есть независимости от движения и зависимости от взаимного расположения или конфигурации тел).

В то же время расчет становился неверным, если работа данных сил зависела от формы пути или силы зависели от скорости движения, если в действие включались «непредусмотренные» силы, такие как сила трения (при этом часть работы рассеивается). Грубо говоря, точно рассчитать работу в механике можно было, исключив «лишние» факторы, то есть перейдя с теоретического на практический уровень, где система по определению не может быть консервативной и изолированной.

По сути, закон сохранения механической энергии работал только для определенного типа явлений, когда трением можно было пренебречь (например, при коротком времени воздействия). Массированный переход к внедрению технических изобретений из лабораторий в промышленное производство требовал прежде всего ответа на вопрос, как и куда уходит потенциальная энергия, совершая работу. Классическая механика ответить на него не могла.

30. Переход от теплородной к кинетической теории теплоты

Теплота и температура как понятия до середины XIX в. были в естествознании синонимами. Этому способствовало существование дополнительного компонента – теплорода . Под теплородом понималась особая составляющая всех материальных тел, способная изнутри нагревать эти тела. Теплород пытались выявить экспериментально, ничего не нашли, но тем не менее признали, что это тончайшая жидкость, которую тело впитывает от солнца, невидимая, невесомая и воспринимаемая органами чувств и приборами как холод или тепло. Уже само определение теплорода должно было скептически настроенных ученых насторожить. Смертельный удар по теплороду нанес ученый Румфорд.

Он решил провести опыты с трением. Теория теплорода объясняла, что при трении из объектов выжимается жидкий теплород, из-за чего изменяется их теплоемкость. Румфорд провел эксперимент по сверлению пушечного ствола и четко зафиксировал результаты: время сверления 150 минут, за счет трения совершена работа, достаточная для испарения 12 кг воды, в то же время получено 270 г металлической стружки, имеющей ту же теплоемкость, что и отливка.

Поскольку источник теплоты, происходящей от трения, был неисчерпаем, а изолированное тело или система тел не может поставлять теплород без ограничения, то полученная теплота теплородом объясняться не может. Так было доказано, что теплорода не существует. В 1827 г. Карно провел теоретический анализ процесса превращения теплоты в работу, а Майер установил механический эквивалент теплоты. Опытным путем он пришел к выводу, что теплоемкости газа при постоянном давлении (Ср) и при постоянном объеме (Сv) неодинаковы (Ср > Сv). Рассматривая теплоту как «силу», то есть энергию, Майер объяснил неодинаковость теплоемкости. При вычислении теплоты по формуле dС = Ср – Сv, он сопоставил теплоту с работой А и получил механический эквивалент теплоты. Его исследования дополнил Джоуль, получивший точный результат механического эквивалента теплоты. Для этого он провел эксперимент, позволивший соотнести затраченную механическую работу с процессом нагревания жидкости: механическую работу выполняла опущенная в жидкость вращающаяся лопатка, нагревание жидкости регистрировалось термометром. В результате работ Майера, Джоуля и Гельмгольца был открыт закон сохранения энергии.

31. Переход от механики к термодинамике

Появление термодинамики как раздела физики прежде всего связано с работами Майера, Джоуля, Гельмгольца, Клаузиуса, Кельвина, Карно. Рождению термодинамики способствовали исследования Карно, ориентированные на практическое применение тепловых машин, а свое название термодинамика получила благодаря Кельвину. Значимыми в термодинамике являются обе части слова – термо , то есть теплота, не входившая как понятие в классическую физику, и динамика , движение, работа – сразу вносившая ясность, что процессы в этом разделе физики не будут рассматриваться как статичные.

Термодинамика изучает особенности превращения тепловой формы движения в другие, не учитывая микроскопического движения частиц, составляющих вещество. В термодинамике существует более мелкое деление структуры – на: термодинамику равновесных систем или систем, переходящих к равновесию (классическая, или равновесная термодинамика), и термодинамику неравновесных систем (неравновесная термодинамика). Классическая термодинамика сформировалась к середине XIX в., а неравновесная термодинамика – ко второй половине XX в.

Параллельно с термодинамикой получила развитие молекулярно-кинетическая теория, изучающая макроскопические проявления систем как результаты суммарного действия совокупности хаотически движущихся молекул. В отличие от термодинамики, для которой очень важны точные и конкретные показатели, поскольку от этого зависит работоспособность системы, в молекулярно-кинетической теории принято пользоваться статистическим методом , который сводит все показатели к среднестатистическим величинам.

При изучении действия молекул молекулярно-кинетическая теория не учитывает особенностей движения той или иной молекулы, важна лишь средняя величина, позволяющая выявить характеристики движения массы частиц. По названию метода исследования молекулярно-кинетическая теория получила название статистической физики. Иными словами, механическая физика в XIX в. распалась на два направления: термодинамика и молекулярно-кинетическая теория. Законы, которыми оперировала классическая физика, были пересмотрены и уточнены.

32. Первый закон термодинамики

Впервые идею о том, что всякое тело имеет внутреннюю энергию (U) высказал ученый Клаузиус, и именно эта его мысль легла в основу первого закона (начала) термодинамики. Сам Клаузиус называл эту энергию теплом, содержащимся в теле, в отличие от тепла, сообщенного телу (Q). Экспериментальным путем было установлено, что эту внутреннюю энергию можно увеличить двумя способами: либо совершив над телом механическую работу (А), либо нагрев или охладив само тело, то есть передав ему количество теплоты (Q). Следовательно, формула внутренней энергии определяется следующим равенством: dU = Q – A.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.