Игорь Кароль - Парадоксы климата. Ледниковый период или обжигающий зной? Страница 9
Игорь Кароль - Парадоксы климата. Ледниковый период или обжигающий зной? читать онлайн бесплатно
Итак, наблюдения за природной средой дают представления о том, каким изменениям (далеко не всегда желательным) подвергались отдельные элементы климатической системы в недавнем прошлом. Очевидно, что подобные изменения будут происходить и в дальнейшем. Едва ли их можно предотвратить, но противостоять им в меру современного научно-технического обеспечения людям вполне по силам. А значит, напрашивается вопрос: что, как и в какой мере сказывается на климате Земли? Начнем с главного…
Глава четвертая
Солнце – «наше все»
Единственный Бог, на которого с научной точки зрения следует молиться землянам, – это Солнце.
Неизвестный авторВоздействие на климатическую систему земли извне
«Из всех искусств для нас важнейшим является кино» – такова расхожая, правда не совсем точная, цитата из наследия вождя мирового пролетариата. В переложении для темы нашего разговора она могла бы гласить: из всех факторов, определяющих климат Земли, важнейшим является Солнце. Причем, в отличие от кино, Солнце не имеет в этом качестве достойных конкурентов.
О ключевой роли светила в жизни нашей планеты люди догадывались еще на заре человечества. Догадки сменились обожествлением Солнца и природных стихий (cм. рис. 7 цв. вклейки). Вряд ли в истории отыщется народ, не возведший Бога Солнца в Пантеон. А в ряде случаев ему был придан статус Верховного Бога (самый известный пример тому – египетский Ра). Исключительность Солнца зиждилась на понимании того, что именно оно обеспечивает людям тепло, свет и пропитание, одним словом, – жизнь. «Дарующим жизнь» и называли древние греки проживающего в окружении времен года Гелиоса. И кому же, как не всемилостивейшему и могущественнейшему Богу, выступать судьей над грешными людьми. Древние римляне почитали бога Соля как блюстителя справедливости, а древние египтяне связывали летний зной с гневом Ра на людей. Велик был соблазн погреться в лучах такого могущества (и погреть на нем руки) у сильных Древнего мира. И вот уже, как на дрожжах, растут и множатся «сыновья» (с «дочерьми» в ту эпоху было напряженно) Богов Солнца, правящие за себя и за «того бога». Ну чем не «сыновья лейтенанта Шмидта»?! В последующие века накапливаемые знания (слава Богам!) мало-помалу вытесняют слепые верования.
Еще в Древней Греции обратили внимание на то, что климат каждой территории прежде всего определяется средней высотой Солнца днем над горизонтом: на севере оно располагается ниже, на юге – выше. Интересно, что само слово «климат» происходит от греческого klima – наклон Солнца.
Греки делили Землю на широтные полосы – климаты. Сначала климатов было пять: северный холодный, северный умеренный, жаркий (где «кипит океан»), южный умеренный и южный холодный. Затем их число возросло: Гиппарх (ок. 180 или 190–125 гг. до н. э., к слову, тот самый, который ввел географические координаты) предложил рассматривать 12, а чуть позже Посидоний (ок. 135–51 гг. до н. э.) – 13 климатов. Однако все это «дела давно минувших дней, преданья старины глубокой».
Сегодня всестороннее теоретическое изучение процессов, происходящих на Солнце, и их влияния на климатическую систему Земли, подкрепляемое регулярными комплексными наблюдениями, идет полным ходом. Но, несмотря на безусловный и значительный прогресс в исследованиях солнечно-земных связей, неясностей, в том числе даже в основополагающих их принципах и механизмах, еще достаточно много. Показательно, что в вышедшем в 1997 г. в Великобритании учебнике климатологии[6] авторы называют «до сих пор не понятным чудом» способ транспортировки энергии Солнца через космическое пространство к атмосфере Земли. Нельзя не сказать об объективных сложностях, возникающих у специалистов при изучении как Солнца, так и климата нашей планеты. Дело в том, что эти специалисты (в отличие, скажем, от химиков) лишены возможности проводить исследования с помощью лабораторных экспериментов и вынуждены ограничиваться лишь натурными наблюдениями. Следовательно, крупные прорывы в этих областях знаний могут произойти или при накоплении большой базы данных и последующем ее анализе (диалектический закон перехода количества в качество), или в результате гениального озарения (помните известный конфликт между яблоком и головой Исаака Ньютона?). Базы данных сейчас пополняются постоянно и интенсивно, осталось дождаться, когда их «масса» превзойдет «критическую». Что же касается второго пути, то тут, понятно, что-либо предсказать невозможно, остается только надеяться… Может, таким открывателем окажется кто-то из наших читателей, увлеченный романтикой научного поиска.
И все же давайте вернемся к объекту повествования – Солнцу. Дабы показать масштабы зависимости от Солнца всего происходящего на Земле, приведем два факта. Дадим слово Г. Кинсу, представляющему фонд Desertec[7]: «За 6 часов пустыня Сахара получает больше энергии от Солнца, чем человечество тратит за год». Площадь Сахары составляет примерно 7 млн км2. Для сравнения: площадь поверхности Земли около 509,5 млн км2, т. е. Сахара занимает всего лишь примерно 1,4 % земной поверхности.
Вдумайтесь: для обеспечения годовой потребности в электроэнергии человечество прилагает титанические усилия, сопровождаемые колоссальными материальными затратами, ухудшением состояния природной среды и даже людскими потерями. А результат этих усилий соизмерим с энергией, получаемой относительно небольшим кусочком Земли за четверть суток!
Оговоримся, приведенное здесь сопоставление площадей не совсем корректно, так как не ко всем областям Земли Солнце одинаково щедро: на экваториальную зону приходится максимум энергии светила, а в качестве «бедных родственников» выступают полярные регионы (см. рис. 2 цв. вклейки). И все равно факт, согласитесь, впечатляет.
Второй факт можно условно назвать «украденное Солнце» (помните такое стихотворение К. И. Чуковского?). Лет 10–15 назад американские исследователи задались вопросом, как долго будет продолжаться циркуляция воздуха и океана на Земле, если Солнце вдруг «потухнет». Разница в потоках солнечной энергии к экватору и полюсам порождает различную степень нагрева там обеих субстанций – воздуха и воды. В соответствии с физическими законами для газов и жидкостей, давление в них на экваторе и полюсах оказывается неодинаковым, что вызывает перенос обеих субстанций, стремящийся это давление выровнять. Образуется система ветров и течений, другими словами, возникает циркуляция. Если же Солнце «выключить», приток энергии, естественно, станет всюду равным нулю, но энергозапас – инерция, в первую очередь океана – не позволит циркуляции немедленно прекратиться. Такую гипотетическую ситуацию и исследовали американцы, заложив соответствующие установки в климатическую модель. Согласно их расчетам, циркуляция климатической системы «продержалась на внутренних резервах» около трех месяцев, после чего остановилась. Вот такой запас прочности имеет наша климатическая система. К разговору об альтернативных источниках энергии (главным образом, электрической), равно как и о модельных исследованиях климата, мы еще вернемся. А пока…
Как мы уже знаем, климат местности напрямую зависит от того, сколько солнечной энергии достигает земной поверхности. В соответствии с законами физики, Земля, являясь серым телом[8], как поглощает энергию, так и излучает ее, и эти процессы определяют температуру подстилающей поверхности, а также земной атмосферы. Напомним, что Земля поглощает солнечное (часто именуемое коротковолновым) излучение с длиной волны (λ), не превышающей 4 мкм[9], а излучает радиацию с длинами волн, большими 4 мкм. В среднем на каждый квадратный метр приходится поток солнечной энергии, равный 1370 Вт[10], эту величину называют солнечной постоянной. Если же мысленно построить сферу, проходящую по верхней границе атмосферы, то на 1 м2 ее поверхности попадает приблизительно 343 Вт солнечной энергии. Примерно 31 % этого потока отражается атмосферой и подстилающей поверхностью и лишь около половины достигает поверхности Земли и поглощается ею (остальные 19 % поглощаются в атмосфере, главным образом, облаками). В свою очередь, земная поверхность испускает в атмосферу длинноволновое (тепловое) излучение. Если бы все это тепловое излучение беспрепятственно покидало атмосферу, то среднегодовая среднеглобальная температура воздуха у поверхности Земли была бы -19 °C, однако в действительности она составляет +14 °C! Комфортную добавку в 33 °C обеспечивает нам сопровождаемая выделением тепла способность атмосферы, точнее – ее некоторых газов и облаков, задерживать и поглощать уходящую длинноволновую радиацию (с длиной волны λ > 4 мкм). В свете сказанного обратим особое внимание на двоякую роль облаков в радиационном режиме системы «Земля – атмосфера»: с одной стороны, они сокращают приток солнечной радиации, отражая ее, с другой, благодаря поглощению ими солнечного и особенно длинноволнового излучения, столь существенен нагрев атмосферы. Преобладание одного из этих процессов над другим зависит от типа облаков, их плотности и высоты расположения.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.